CS 6212 DESIGN AND
ANALYSIS OF
ALGORITHMS

LECTURE: DATA STRUCTURES -
PART II

Instructor: Abdou Youssef



OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:
 Describe binary search trees (BSTs) and heaps

e Explain the algorithms for insert, search and delete operations in BSTs,
and derive their time complexities

» Explain the algorithms of the delete-min and insert operation in heaps,
and prove their logarithmic time complexity

e Step through a comprehensive, non-trivial data-structure design process
(for Union-Find), along with progressive enhancements

e Distinguish yet relate between conceptual and physical implementations



OUTLINE

* Binary Search Trees: Structure, operations, and time complexities

e Heaps: Structure, operations, array implementations, and time
complexities

e Union-Find Data Structure:
e Specs
e Conceptual and physicalimplementations

e Three successively better implementations and their time analysis



BINARY SEARCH TREES
-- DEFINITION --

 Definition: A binary search trees (BST) T is data structure with a built-in
organization where
 The datais of any kind that has a comparatorlike < (e.g.,int, real, String)
 The organizationis a binary tree where for every node x:
e x holds (among its data) a data field called key

» all the nodes in the left subtree of x have keys that are < the key of x, and

e all the nodes in the right subtree of x have keys that are > the key of x.

 The operations supportedare:search (a),insert (a), delete (a)



BINARY SEARCH TREES
-- EXAMPLE--
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28 48 58
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BINARY SEARCH TREES
-- SEARCH --

Function search(T,a) //T is a nodeptr to the root node record

begin
nodeptr p; record node key
= begin
p . generic key; left | right
while (p !=null and p.key!=a) do nodeptr left;
if a <p.key then nodeptr right; / \
p := p.left; end
else
p := p.right;
endif
endwhile
return (p);

end search



BINARY SEARCH TREES
-- EXAMPLE--

Search(160): _
. 160?100: 160>100 => go right (@

55

> NOBO
TN
24 36 56 34 @

28 48 58
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Search(160):

BINARY SEARCH TREES

 1607100: 160>100 => go right
 1607150: 160>150 => go right

34

24

28
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-- EXAMPLE--
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BINARY SEARCH TREES
-- EXAMPLE--
Search(11600):

 1607100: 160>100 => go right 100
e 160?7150: 160>150 => go right

. 1607170: 160<170 => go left
55
> NOMEO
TN
24 36 56 34 @
28 48 58 @

43
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BINARY SEARCH TREES

Search(11600):

 1607100: 160>100 => go right
 1607150: 160>150 => go right
 160?7170: 160<170 => go left
 1607160: 160==160 => found

34
24 36

28 48

43
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-- EXAMPLE--

55

100

56

58

Data Structures

10



BINARY SEARCH TREES
-- SEARCH TIME COMPLEXITY--

e Search(T,a) takes as many comparisons as
depthr(a) + 1 = O(depth(T) + 1) = O(height(T)+1) = 0(h+ 1) = 0(h)

e Therefore, search takes O(h) time
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BINARY SEARCH TREES
-- INSERT --

e Insert(T,a) method

1. Search for the missing node containing a

a. keep record of the parent p

b. Keep record whether the missing node is a left child or a right child of p

2. Create a new node g, and put a in it

a. Have p point to q



BINARY SEARCH TREES

-- INSERT --

procedure insert(T,a)
begin
nodeptr p;
p=T;
Bool done = false;
while not done do
if a <=p.key then
if p.left |= null then
p = p.left;
else
p.left = new (node);
p.left.key = a;
done =true;
endif

// Continueinsert here
else
if p.right!= null then
p = p.right;
else
p.right = new (node);
p.right.key:= a;
done = true;
endif
endif
endwhile
end insert




BINARY SEARCH TREES
-- INSERT EXAMPLE (INSERT(51)) --

Insert(51)

e Find the missing node of 51

e It is to the right of 48
55

34
24 36

28 48
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BINARY SEARCH TREES

-- INSERT EXAMPLE (INSERT(5S1)) --

Insert(51)

 Find the missingnode of 51 100
It is to the right of 48

e Create a newnode for 51 55 @
 Make new node right child of 48
. o @
TN
24 36 56 34

28 a8 58 @

43

15
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BINARY SEARCH TREES
-- INSERT EXAMPLE (INSERT(49)) --

Insert(49): @
Search(49)

Found left of 51
Create node for 51 @ @
Insert it as left child of 51

24 36 @ 84 @
i

= (= (>
59) (s
43 49

16
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BINARY SEARCH TREES
-- COMPLEXITY OF INSERT --

Recall that:
Insert(T,a) method

1. Search for the missing node containing a m

a. keep record of the parent p

b. Keep record whether the missing node is a left child or a right child of p

2. Create a new node g, and put a in it m

Therefore, time of Insert is: O(h)+0O(1) = O(h)

17
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BINARY SEARCH TREES
-- DELETE --

Procedure delete(T,a)
1. Search for a;if not found, return;
2. Let p be the pointer pointing to the node containing a;

3. If pisaleaf, remove it (making its parent’s corresponding pointer
null), and return;

4. If p has one child, make that child take the place of node p, and return;
5. If p has two children:

Search for the largest (rightmost) node in the left subtree of p, and call it g;
Move the key of g to node p;// now g is an empty node

If g is a leaf, delete and return;

o0 o op

Else, g has a left child only: bypass it as in step 4, and return;



BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(49)) --

Delete (49): @
e Find 49;let p point to it @ @



BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(49)) --

Delete (49): @
e Find 49;let p point to it
e Since it is a leaf, delete it,

and set to null the pointer @ @

to it from its parent f

O OO
) (5
43

S

20
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BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(56)) --

Delete (56): @

e Find 56;let p point to it @ @
O

OERONAONRC

43 ) 49



BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(56)) --

Delete (56):
 Find 56;let p point to it @
e Since it has only one child (58),

delete 56, @ @



BINARY SEARCH TREES

-- DELETE EXAMPLE (DELETE(56)) --

Delete (56):

 Find 56;let p point to it

e Since it has only one child (88),
delete 56, and make 58 an
immediate of the parent 67
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BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(55)) --

Delete (55): P @
« Find 55;let p point to it \ @



Delete (55):

e Find 55;let p point to it P

BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(55)) --

e Delete the key of p \ @

o ONONO

43 ) 49



BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(55)) --

Delete (55):
 Find 55;let p point to it p @
 Delete the key of p \
» Find largest node in left . @
subtree of p: 51
OEROEENCONRC
) GIM,

43 ) 49



BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(55)) --

Delete (55): @
Find 55; let p point to it

p
Delete the key of p \ >
Find largest node in left
subtree of p: 51

Move key of qtop
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BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(55)) --

Delete (55):
Find 55; let p point to it @

Delete the key of p

p N
Find largest node in left e @

subtree of p: 51

Move key of g to p @ @
Bypass g
CORNC) (s6) (s ©

43
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BINARY SEARCH TREES
-- DELETE PSEUDOCODE (1/3) --

procedure delete(T,a) // continue delete here

begin if p == null then return;
nodeptr p,q,r,s;

elseif p.left == null and p.right == null then

integer direction,;
p=T;
while (p != null and p.key!=a)do
if a < p.key then
q:=p;

p := p.left;
direction := 0;
else
q:=p;
p := p.right;
direction:=1;
endif
endwhile
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// p has no children; delete that node
if direction == 0 then q.left = null;
else q.right = null ;

endif

free (p);

elseif p.left == null then

// p has only one child, the right one

if direction == 0 then q.left := p.right;
//shortcut from parent to grandchild

else q.right := p.right;

endif

Data Structures




BINARY SEARCH TREES
-- DELETE PSEUDOCODE (2/3) --

// continue delete here // continue delete here
elseif p.right == null then // now q will be the parent of
// p has only one child, the left one // s , and direction will
if direction == 0 then // indicate the type of child s
q.left := p.left; //isto q
else

q.right := p.left; direction = 0;
endif while s.right != null do

else q:=s;

// p has two children s := s.right;

// find the maximum node in the direction:=1;

// left subtree of p endwhile
s := p.left; // Now s points to the maximum node
q:=p; // in the left subtree of p

p-key := s.key;

CS 6212 Design and Analysis of Algorithms Data Structures




BINARY SEARCH TREES
-- DELETE PSEUDOCODE (3/3) --

// continue delete here
// now node s must be deleted. But since s has no right child,
// the deletion is done by deletion or shortcutting
if s.left == null then // s is a leaf
if direction == 0 then q.left := null;
else q.right := null;
endif
free (s);
return;
else // s has aleft child
if direction == 0 then q.left := s.left;
else q.right := s.left;
endif
free(s) ; return;
endif
endif
end delete
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Therefore,Delete Time: O(depth;(p))+ O(depth:(q)- depth(p)) +O(1)=0(depthy(q))=0(h)

BINARY SEARCH TREES
-- COMPLEXITY OF DELETE --

Procedure delete(T,a)
1.
2.
3.

Search for a; if not fW O(depth;(a))=O(depth(p))

Let p be the pointer pointing to the node containing a;

If p is a leaf, remove it (making its parent’s corresponding pointer
R ——— .

If p has one child, make that child take the place of node p, and return;«~—
Time:O(l) [——

If p has two children: Time: O(depth,(q)- depth(p))

a. Search for the largest (rightmost) node in the left subtree of p, and call it g;
b. Move the key of q to node p; // now q is an empty node™ m

c. If qisaleaf, delete and return; .

d. Else, qhas aleft child only: bypass it as in step 4, and return; w

32
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HEAPS
-- DEFINITION --

 Definition: A heap H is data structure with a built-in organization
where
 The datais of any type that has a comparatorlike < (e.g.,int, real, String)
 The organizationis an almost complete binarytree where for all nodes x:
e x holds (among its data) a data field called key
e The key of x is < the keys of its children

 The operations supportedare:

* delete-min():it finds & deletes the minimum
value m, restores the heap, and returns m. (10

e insert(H,a): inserts a new value a into the heap
o . e For <:it is min-heap
e Notes: the minimum is at the root e For >:it is a max-heap




HEAPS
-- USES--

A heap implements a priority queue

e Unlike the familiar queue which implements “first-come, first serve”
e It implements “first-priority,first serve”

e So,to select (and remove) the next item from the priority queue
1. we look for the item of highest priority/importance (e.g., of priority 1)

2. remove it from the waiting (priority) queue, and serve it.
e That is accomplished using delete-min()
e As new items come to the waiting line, S
they have to be inserted, using insert(...) 10
e Operating systems use heaps to prioritize Waitiﬁé processes



HEAPS
-- INSERT --

procedure insert(H,a) // inserts the key value a into the heap
begin

create a node of label n+1, and insert a into that node;

let x point to that node;

while (x <its parent OY xis not root) do
swap the key of x with key of the parent of x;
let x point to its parent;
endwhile
end insert




HEAP

-- INSERT EXAMPLE ( INSERT(H,18) )--

e Let H be the following heap:

e Insert(H,18):
e Put 18 as the next node while preserving the
almost-complete structure
» Restore heap: well, 18 is already > its parent

* So, no restoration is needed

CS 6212 Design and Analysis of Algorithms
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HEAP
-- INSERT EXAMPLE ( INSERT(H,4) )--

e Insert(H,4):

CS 6212 Design and Analysis of Algorithms Data Structures
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HEAP
-- INSERT EXAMPLE ( INSERT(H,4) )--

e Insert(H,4):

e Put 4 as the next node while preserving the

almost-complete structure S

CS 6212 Design and Analysis of Algorithms Data Structures
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HEAP
-- INSERT EXAMPLE ( INSERT(H,4) )--

e Insert(H,4):

e Put 4 as the next node while preserving the

almost-complete structure S

RN

* Restore heap: ~

~
1. Since 4 <its parent 8, sqrip it with parent v

CS 6212 Design and Analysis of Algorithms Data Structures
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HEAP
-- INSERT EXAMPLE ( INSERT(H,4) )--

e Insert(H,4):

e Put 4 as the next node while preserving the

almost-complete structure S

RN

* Restore heap: ~

~
1. Since 4 <its parent 8, sqrip it with parent v
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HEAP
-- INSERT EXAMPLE ( INSERT(H,4) )--

e Insert(H,4):

e Put 4 as the next node while preserving the

almost-complete structure S

RN

* Restore heap: o
5

1. Since 4 <its parent 8, swap it with parent Sa

2. Now 4 > its new parent g,\\ N

.. ~
So thq restorationis coxﬁplete ~
] N
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HEAPS
-- TIME COMPLEXITY OF INSERT --

procedure insert(H,a) begin
create a node of label n+1, and insert a into that node;
let x point to that node;

while (x <its parent OY xisroot)do

swap the key of x with key of the parent of x;
let x point to its parent;

eFdWhlle » The while-loop iterates at most the height of
end insert the tree

» Every iteration takes constant time (one
comparison and one swap)

e Thus, Insert take O(h) time

e But for almost-complete trees, h=0O(og n)

 Therefore, Insert takes O(log n) time




HEAPS
-- DELETE-MIN--

function delete-min(H) /* H is the heap*/
begin
x= root of H;
r=key of x; // to be returned at the end
remove r from node x;
take the last node (node n), remove its key (call it b), and store b in the root;
remove node n;
// now restore the heap
while (x has a key bigger than one of its children) do
swap x with the smaller child;
make x point to that child;
end while
// the while loop will stop when x becomes a leaf or < both its children
Yeturn r;

end delete-min




HEAPS
-- EXAMPLE OF DELETE-MIN() --

e Delete-min()

¢ The minimum is at the root (of value r=1) ===="""

CS 6212 Design and Analysis of Algorithms
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HEAPS
-- EXAMPLE OF DELETE-MIN() --

e Delete-min()

e The minimum is at the root (of value r=1)

and remove the last node

L -
L
—_— gy,
—_— oy
—_— oy,
_— iy
-_— gy,
-
------
-_— iy,
—_— oy
_— oy
—_— oy,
—_— gy,
—-_ iy,
L
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HEAPS
-- EXAMPLE OF DELETE-MIN() --

Delete-min()

The minimum is at the root (of value r=1)

Replace the root value with the value of the last node

and remove the last node

Restore the heap

» Swap 8 with its smaller child (3)~=—__ _

-_— oy
-~
L
--
—_— gy,
-~~---
_—
~-
--
—_—ay,
L]
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HEAPS
-- EXAMPLE OF DELETE-MIN() --

Delete-min()

The minimum is at the root (of value r=1)

Replace the root value with the value of the last node

and remove the last node

Restore the heap

e Swap 8 with its smaller child (3)
 Swap 8 w1th its smaller child 4\
e Now8is a lea'f'~s.tQp

CS 6212 Design and Analysis of Algorithms
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HEAPS
-- TIME COMPLEXITY OF DELETE-MIN --

function delete-min(H) Time complexity of delete-min():

begin » Before the while loop, there is constant-time work;

e The while loop iterates at most the height of the tree
(recall h=0O(log n))

 Each iteration takes constant time (swap)

« Therefore, delete-min takes O(h)=0O(log n) time
take the last node (node n), remove its key (call it b), and store b in the root;

x= root of H;
r=key of x;
remove r from node x;

remove node n;
// now restore the heap
while (x has a key bigger than one of its children) do
swap x with the smaller child;
make x point to that child;
end while
// the while loop will stop when x becomes a leaf or < both its children
Yeturn r;

end delete-min




IMPLEMENTATION OF HEAPS WITH ARRAYS
-- STRUCTURAL CORRESPONDENCE --

 Any almost-complete trees can be stored in an array A

 Node of canonical label 11s placed 1n entry AJ1]

Alil] a b ¢

4 (5]6]7[8]9] 10
d e f g h i ]

The corresponding array;
the data of nodeiis in AJi]

An almost complete binary tree;
the canonical labels are outside the nodes;
the data are inside the nodes;

49
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IMPLEMENTATION OF HEAPS WITH ARRAYS
-- NAVIGATION --

e Tree navigation (between parents and children, going to root, or going to
last node) can be mirrored in the array

e The left and right children of node i are 2i and 2i + 1, and the parent of i is [éj

Going from node i to its left/right child is like going from A[i] to A[2i] or A[2i + 1]

Going from a node i to its parent is like going from A[i] to A[[éj]

The rootis at A[1], and the lastnode (saynoden) isat A[n]

Thus, for example, swappingnodes i and j is like swapping A[i] and A[j]

e Therefore, every step of the insert() and delete-min() can be expressedin
terms of the array, and the time complexities stay the same, i.e., O(log n)

* 50, the tree can be viewed as a conceptual implementation, while the
array can be viewed as the physical implementation of the heap

50
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HEAPS AS ARRAYS
-= JLLUSTRATION: DELETE-MIN()--

(1)

Original Heap: Corresponding array:

11359 4 14/7/1018 8

Move last entry to A[1]:

83 5 9414 71018

Move last node
to root:

Swap root A[1]=8 with smaller child (A[2]=3):
3/8/5 9 4147 10/18

Swap root with
smaller child:

Swap A[2]=8 with smaller child A[5]=4:
3 45 9814 7 10 18

Data Structures

with smaller child e e @
(of node label 5):
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CREATING A HEAP FROM SCRATCH

 How long does it take to build a heap of n values from scratch:

 One method is to call insert(...) n times on an initially empty heap

e Time: O(log1 +1log2 +1log3 + -+ logn) = O(logn!) = 0(n logn) ,where the last
equality can be proved used Stirling’s approximation

e There is an alternative (recursive) method that takes O(n) time

« We won’t cover it in this course, and so you don’t need to know the algorithm for
that

e But you need to know that heaps can be constructed in O(n) time



USE OF HEAPS FOR SORTING

* You can use heaps for sorting, i.e., for re-ordering an arbitrary input
array into increasing order (i.e., from the smallest to the largest)

* Method.:
1. Build the input array into a heap (in time O(n))

2. Fori=1 to n do: x=delete-min();put x next in the output; endfor

e Time:
e Step 2 takes O(logn + log(n — 1) + log(n—2) +---+1logl) = O(logn!) =
O(n logn)
e Therefore,total time is: 0(n) + O(n logn) = O(nlogn)



UNION-FIND DATA STRUCTURE
-- DEFINITION --

e Definition:
e Data:n disjointsets {1}, {2}, ... , {n}, where each set has initially a single
element
 Operations:

e Union: U(A,B), which unions the two input sets A and B such that after the
union, the two old sets A and B are removed from the collection of sets, and
replaced by the new set C = A UB.

e Find:F(x),where x is an integer between 1 and n, finds the set that
contains x

e Notes:

 The unions change the collection of sets, but the find(s) do not

e The sets in the collection are disjoint (non-overlapping) at all times



UNION-FIND DATA STRUCTURE
-- GOAL AND STRATEGY --

* Goal: to design a data structure so that O(n) calls to U and F take as little
time as possible

 We will carry out the design of the data structure by having two different
representations of the sets: one conceptual and one physical.

 The conceptual representation:

« Eachsetis arooted tree (not necessarily binary) containing the elements
of that set

 The nodes are labeled with the elements of the corresponding set

 As new sets are born (from Union), we need an automated naming system

e The physical representation will be derived a little later



UNION-FIND DATA STRUCTURE
-- EXAMPLE OF TREE REPRESENTATION--

e Suppose we have 11 elements: 1,2, 3,...,11

e Suppose after a few unions, the collection of sets is:

{2,3,4,5,8), {6,7}, {1,9,10}, and {11}

e The tree representation of the data structure can be: o
* One tree per set: the tree contains the elements of its set 0 0 0 0 @ 0
8)

« We don'’t care about the structure of each tree

e But we care what elements are in each tree

 We need a set-naming mechanism that gives a unique name to each set,
including to new sets that emerge out of Union

« Naming scheme: Let the root label double as the label for that set

56
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UNION-FIND DATA STRUCTURE
-- FIRST IMPLEMENTATION (UNION) --

 U(A,B) can be done by “a single stroke”
e Make the root of A to be the parent of the root of B

* Note that the trees of A and B stop existing separately,and are replaced by the
new tree, which is what we want

 Example: 9 n @
Do U(2,9) when the collection is: 9 0 0 0 @ 0
&)

 This unions the tree rooted at 2 with the tree rooted at 9, which is like,

U({2,3,4,5,8},{1,9,10}) (2) (11)
(D

 The result,derived by making 2 the parent of 9: (5)(3)(4)(9)

(&)@ (W



UNION-FIND DATA STRUCTURE
-- FIRST IMPLEMENTATION (FIND) --

* F(x) needs to return the name of the set containing element (int) x
 The name of that set is the label of the root of the corresponding tree

 We can find that root by:

 Moving up from x to its parent, and from that to its parent,and so on until we
get to the root, which has no parent

* Return that root.

« Example: F(10) (2) (1
e Parentof 10is 9 () (@) () (9) (D)
e Parent of 9 is 2 (8)(0) (1)

e Parent of 2 doesn’t exit => 2 is the root => return 2 (which means that the set
that contains 10 is set 2)



UNION-FIND DATA STRUCTURE
-- FIRST PHYSICAL IMPLEMENTATION --

« We can implement the collections of trees (we call it forest) by using
general tree representations (using node records and pointers)

e But there is a better, cheaper representation, which we’ll derive next

* Note that in both the Union and Find that we just did, we only needed to
refer to parents of nodes (never to children), and to know which is root

e 50, 1f we use a physical representation that stores the parent of each node
and that signals which nodes are root, that representation is adequate for

implementing U and F (6) (11)
. Answer: a single array PARENT[1:n] where (5) 0 (1)) (7
« PARENT(i] stores the parentof node1i (8) (10) o

e Ifiis aroot, set PARENT[i]=0 (or any number other than 1,2, .



UNION-FIND DATA STRUCTURE
-- FIRST PHYSICAL IMPLEMENTATION: PARENT ARRAY --

« PARENT array of this collection:

(2) (6)(9) (W)
EEnnononnnnnn
MQ0222064090 e

* Note: at the beginning, PARENT[i]=0for all i, because each set is a single node,

and so, that node is root.

Procedure U(i,) i‘unftion F&) [, pime:0 M)
« Implementation of U and F | Begin egm « h= height of tree
AARERITSTE wL:l_eXI;’ARENT[r] > 0) do
using PARENT: End U r = PARENT[x];
. endwhile // now r is a root
e Time:O(1) return (1)
end

60
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UNION-FIND DATA STRUCTURE
-- FIRST PHYSICAL IMPLEMENTATION: U(2,9) AND F(10) --

« PARENT array of this collection before U(2,9):
EERDADARENEnE .
l
& OwW @
MQ0222064090 e

e U(2,9):PARENT[9]=2,which resultsin this array:

-ﬂﬂﬂlﬂﬂﬂﬂﬂﬂﬂ N

6 4 2 9

. F(10):
« PARENT[10] == 9 - PARENT|[9] == 2 —» PARENT[2]==0 — 2 is the root
e Therefore, the set returned by F(10) is set 2, which is correct

61

CS 6212 Design and Analysis of Algorithms Data Structures



UNION-FIND DATA STRUCTURE
-- 15T IMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--

e Each Union takes O(1) time, so O(n) U’s take O(n) time
 Each Find takes O(h), but how bad can h be?

 Answer:it can be as bad as O(n), which makes O(n) calls to F take O(n?) time

 Proof:
e Take this sequence of calls: U(2,1),U(3,2),U4,3), ... ,U(n,n-1),F(1),F@), ... ,F(n)
e The calls to U create a single-path tree: n,n-1,n-2,... ,2, 1 (prove that to yourself)

The depth of node (i) is n-i, for all i
Thus, each F(i) takes O(n-1) time
Therefore, the n calls to F take: O(1+2+...+(n-1))=0(n(n-1)/2)=0(n?)

e O(n?) can be quite costly: check if n = 1 Mil, on a computer that executes
1MFLOP (1 million operations/second), what is O(n?) be in real time?



UNION-FIND DATA STRUCTURE
-- SECOND IMPLEMENTATION --

e Issue:the reasonwe could get suchlong thin trees is

e U(1,j)) makes ithe parent of j regardless of how small tree i is

« Remedy:Make the root of the bigger tree the parent of the other root

e Issue:This requiresthat we compute (or keep track of) the size of each tree

e Remedy:Ifiis aroot,let PARENT([i] store the number of nodes in tree rooted at 1
e Issue:lf PARENT][i]==3,Is 3 the parentofi or # nodes in tree rooted at i?

* Remedy:For root i, make PARENT|i] = —(numberof nodes in tree of i)

e Issue: How to efficiently update tree size while doing unions?

« Remedy: When making i parent of j, the new tree of i has the sum of nodes of the
two old trees: PARENT([1i]:=PARENT[i]+PARENT[j],which takes O(1) time!!
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UNION-FIND DATA STRUCTURE
-- 28D JMPLEMENTATION (UNION) --

PARENT array of this collection:

EmDnoaonanoC

9-5222-264-39-

Procedure U(i,))

At the start, PARENT[i{]= —1 Vi,why?|Begin
if |PARENT[i] | >= | PARENT[j] | then

* Implementation of U: s——) PARENT[i]=PARENT[i]+PARENT[j];
PARENT([j]=i;
e How about Find F: same as before else
. PARENT[j]=PARENT[i]+PARENT[j];
e Time of U: O(1) PARENTY[i]=j;
endif

End U

CS 6212 Design and Analysis of Algorithms Data Structures
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UNION-FIND DATA STRUCTURE
-- 2ND JMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--

e Each Union takes O(1) time, so O(n) U’s take O(n) time
 Each Find F(x) takes O(h), but how bad can h be?

e Theorem:h_<log N, where h, and N, are the height and # nodes in the tree
containing x

 Proof:next slide
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UNION-FIND DATA STRUCTURE
-- 2ND JMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--

* Theorem: h, <log N, for all x.

e Proof: By induction on the number of U’s that created the tree of x (call it T,)

e Call m that numberof callsto U

e Basis:m=0.ThenT, is a 1-node tree,i.e.,N.=1 and h,=0.Since log N_=log 1=0,
it follows that h,=log N, and thus h, <log N, in the basis case.

* Induction:Assume that h, < log N, for all trees created after m-1 calls to U, and
let T, be in a tree created from m calls to U. Prove that h, <log N, .

* Suppose the m™ callto U is U(i,j),and letT; and T; be i

the trees rooted ati and j before that call to U.

 Those two trees were created by at most m-1 calls to U, so

by the induction hypothesis,h; < log N; and h; < log N;



CONTINUATION OF THEOREM PROOF
-- 2ND JMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--

e Proof continuation:

1

 RecallthatT, is the whole tree shown to the right

We’re assuming without loss of generality that N; = N;

h, = max(hl-,l + hj) < max(logNi, 1+ logN]-) = max(logN;,log2 + logN;)

h, < max(logNi,logZ + logNj) = max(logN;,log(2N;))
Also,N; < N;+ N; = N, > logN; < log N,

From the previous3 bullets, we get: h,, < max(logN;,log(2N;)) < log N,

Therefore, h, < log N,,which is what we needed to prove. Q.E.D.



UNION-FIND DATA STRUCTURE
-- 2ND JMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--

e Each Union takes O(1) time, so O(n) U’s take O(n) time

e Each Find F(x) takes O(h,) = O(logN,.) = O(logn)

e Therefore, O(n) F’s take O(n logn) time

e Conclusion: O(n) calls to U and F take O(n + n log n)=0O(n log n) time

e That is much better than O(n?) time
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UNION-FIND DATA STRUCTURE
-- THIRD IMPLEMENTATION: PATH COMPRESSION --

« Can we do better?
e Yes: Keep U as in the 2 implementation, but speed up F

 How? Path Compression
e Call F(x) tracing the path from x to the root (callit r)

e Trace that path again, making each node along the way an immediate child

g
After path compressioa C x
b

of r Y




UNION-FIND DATA STRUCTURE
-- 3RD IMPLEMENTATION: PSEUDOCODE OF FIND --

Function F(x)
begin
intr,s,t;
I=X;
while PARENT[r] > 0 do r = PARENT|[r];endwhile
//now r is a root
s=x; //swilltrace the path from x to the rootr
whiles!=rdo
t:=s; // trecords the current value of s before s steps to its parent

s := PARENT([s];

PARENT[t] :=1; // make t an immediate child of root r
endwhile
return (1);

End F



UNION-FIND DATA STRUCTURE
-- 3RD IMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--

e Theorem: Every O(n) sequence of calls to U’s and F’s take O(n G(n)) time
where G(n) < 5V n < 263000,

« We won’t give a proof for that.

e So,for all practical values of n, G(n) < 5, and so practically the sequence of
calls takes O(n) time.
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