# CS 6212 DESIGN AND ANALYSIS OF ALGORITHMS

# LECTURE: DATA STRUCTURES – PART II

Instructor: Abdou Youssef

Data Structures

# **OBJECTIVES OF THIS LECTURE**

By the end of this lecture, you will be able to:

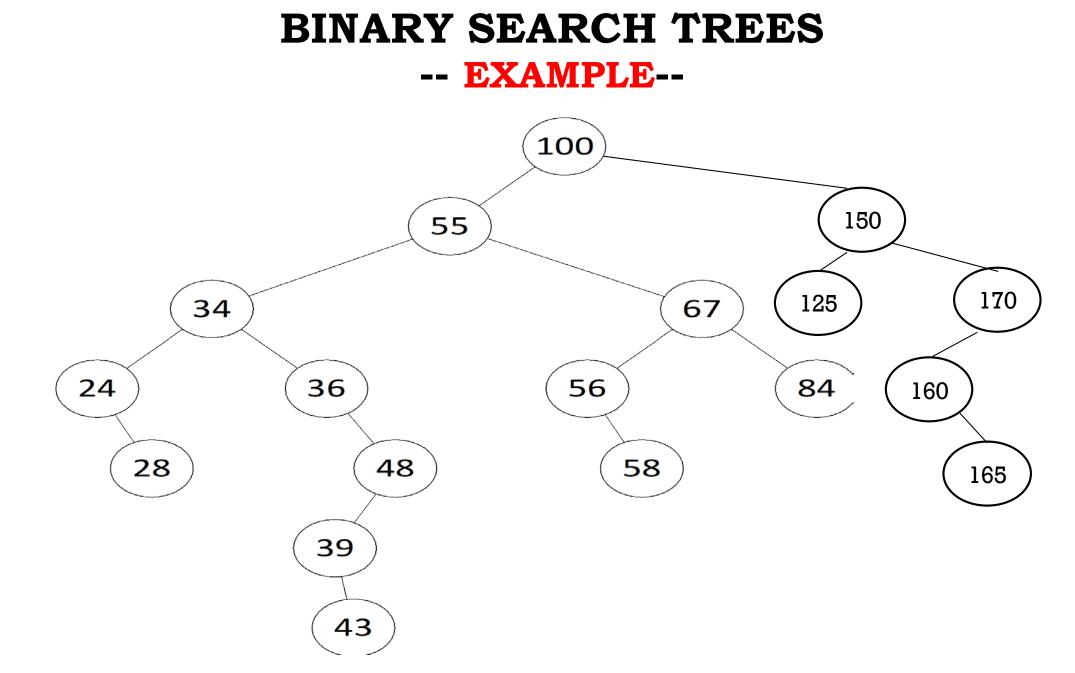
- Describe binary search trees (BSTs) and heaps
- Explain the algorithms for *insert*, *search* and *delete* operations in BSTs, and derive their time complexities
- Explain the algorithms of the *delete-min* and *insert* operation in heaps, and prove their logarithmic time complexity
- Step through a comprehensive, non-trivial data-structure design process (for Union-Find), along with progressive enhancements
- Distinguish yet relate between *conceptual* and *physical* implementations

# **OUTLINE**

- Binary Search Trees: Structure, operations, and time complexities
- Heaps: Structure, operations, array implementations, and time complexities
- Union-Find Data Structure:
  - Specs
  - Conceptual and physical implementations
  - Three successively better implementations and their time analysis

### BINARY SEARCH TREES -- DEFINITION --

- **Definition**: A binary search trees (BST) T is data structure with a built-in organization where
  - The data is of any kind that has a comparator like  $\leq$  (e.g., int, real, String)
  - The organization is a binary tree where for every node x:
    - x holds (among its data) a data field called key
    - all the nodes in the left subtree of x have keys that are  $\leq$  the key of x, and
    - all the nodes in the right subtree of x have keys that are > the key of x.
  - The operations supported are: search (a), insert (a), delete (a)

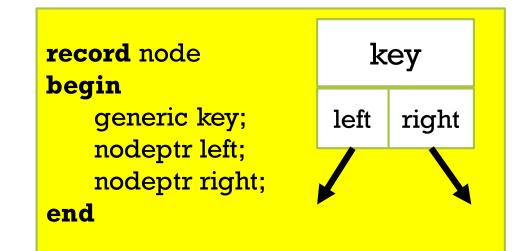


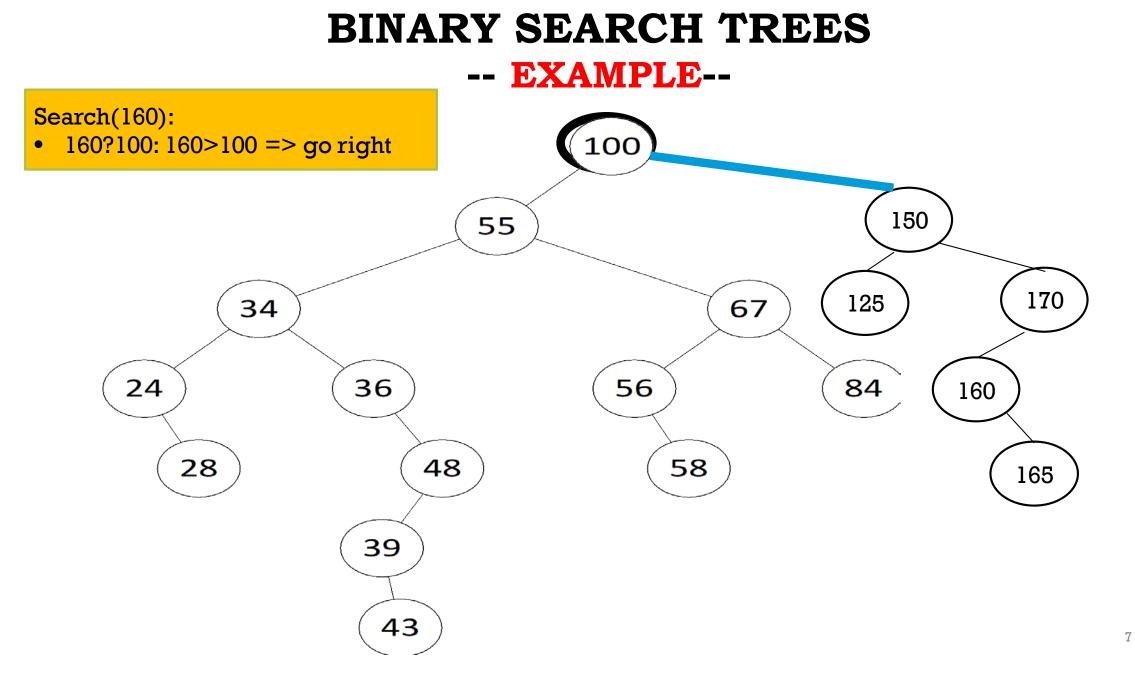
### BINARY SEARCH TREES -- SEARCH --

**Function** search(T,a) // T is a nodeptr to the root node record

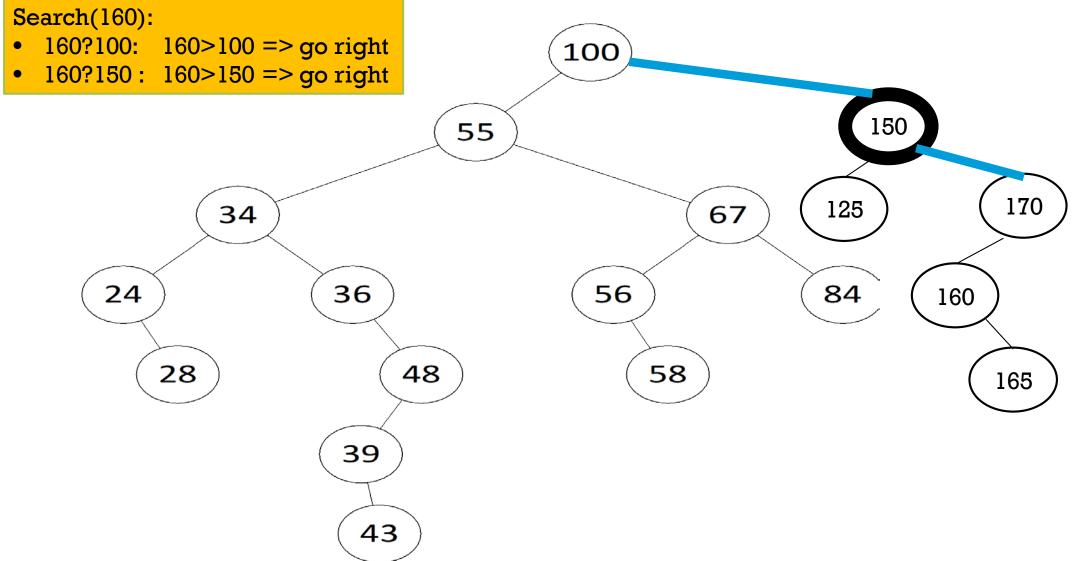
### begin

```
nodeptr p;
   p=T;
   while (p != null and p.key != a) do
      if a < p.key then
          p := p.left;
      else
          p := p.right;
      endif
   endwhile
   return (p);
end search
```

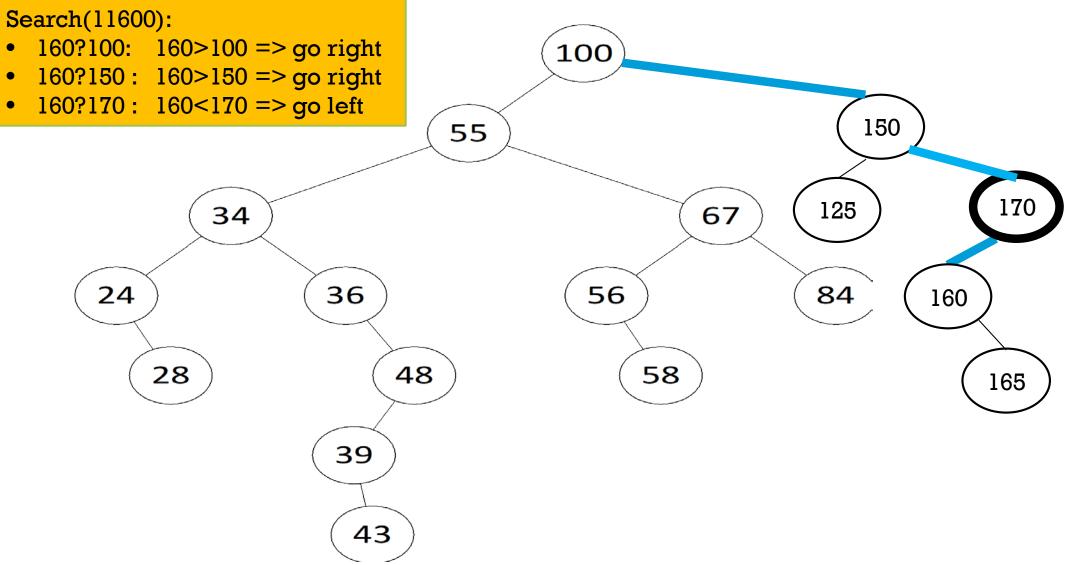




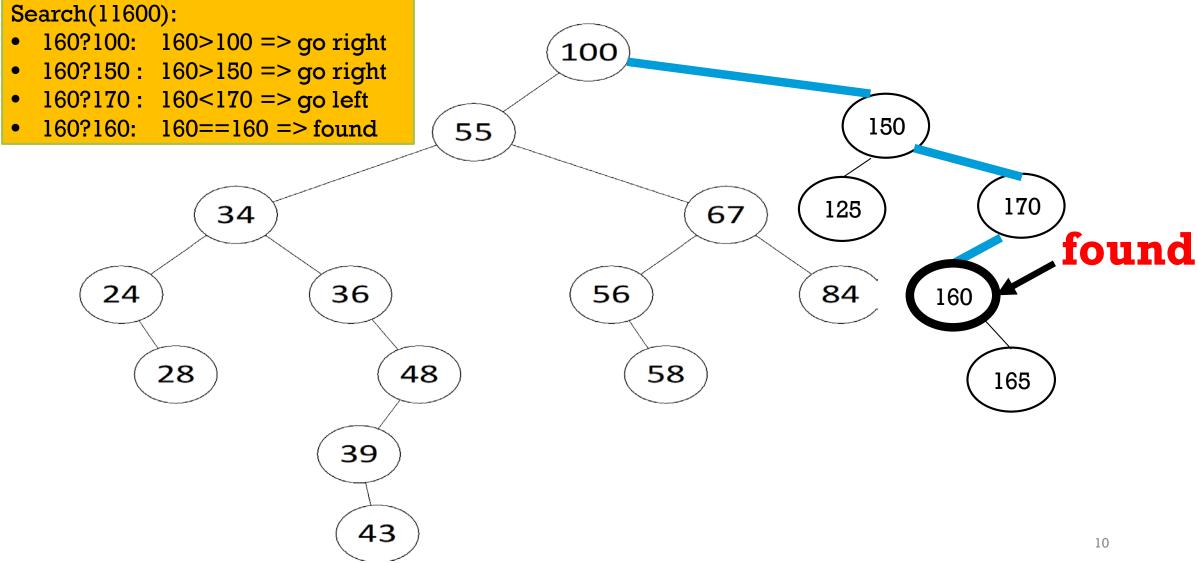
### -- EXAMPLE--



#### -- EXAMPLE--



### -- EXAMPLE--



### BINARY SEARCH TREES -- SEARCH TIME COMPLEXITY--

• Search(T,a) takes as many comparisons as  $depth_T(a) + 1 = O(depth(T) + 1) = O(height(T) + 1) = O(h + 1) = O(h)$ 

• Therefore, search takes O(h) time

### BINARY SEARCH TREES -- INSERT --

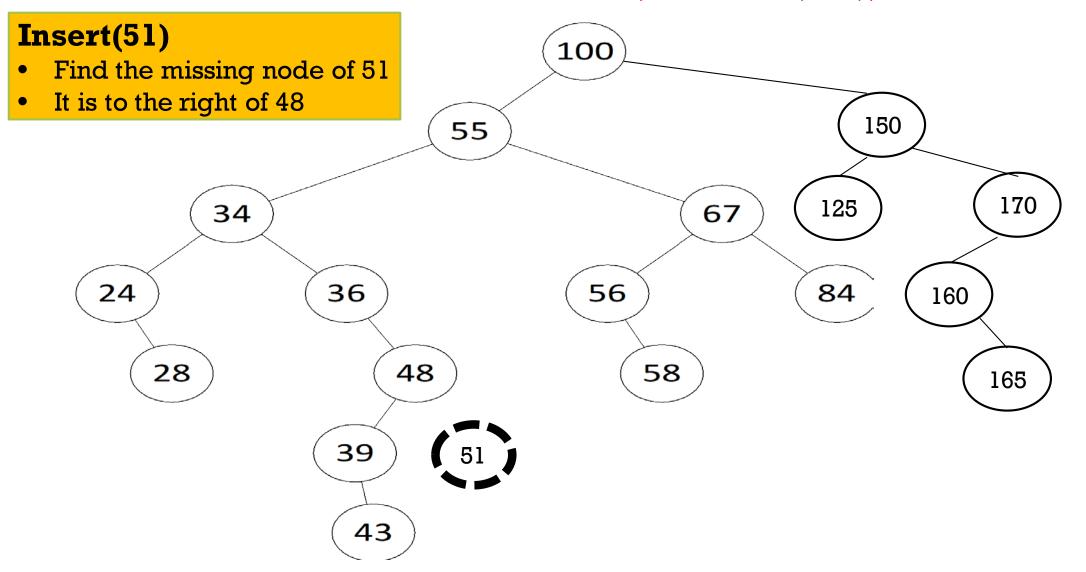
- Insert(T,a) method
  - 1. Search for the **missing** node containing *a* 
    - a. keep record of the parent p
    - b. Keep record whether the missing node is a left child or a right child of p
  - 2. Create a new node q, and put a in it
    - a. Have p point to q

-- INSERT --

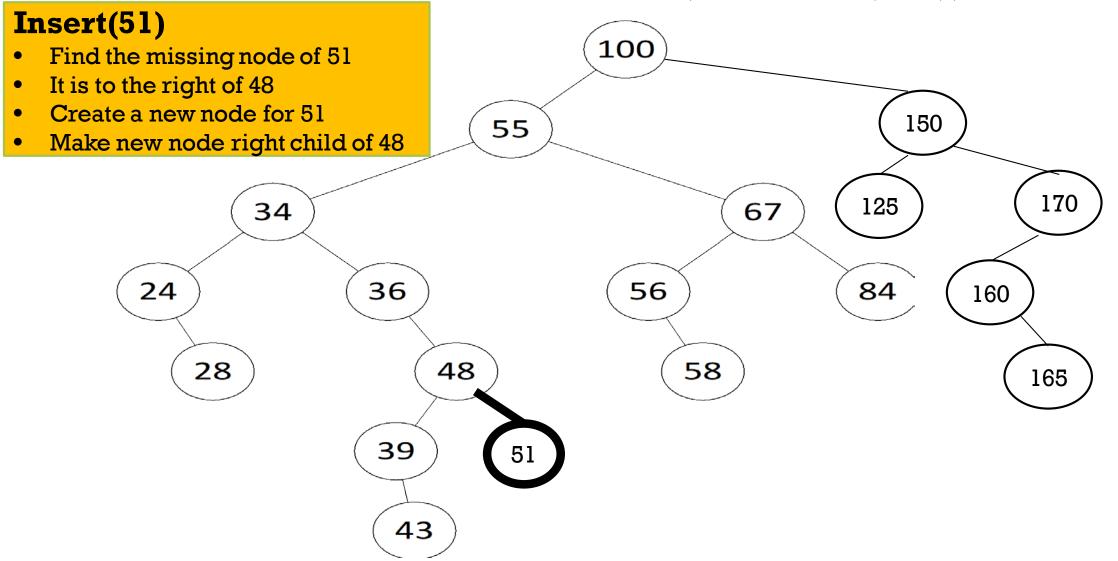
**procedure** insert(T,a) begin nodeptr p; p=T;**Bool** done = false; while not done do if a <= p.key then if p.left != null then p = p.left;else p.left = new (node);p.left.key = a; done =true; endif

// Continue insert here else if p.right!= null then p = p.right;else p.right = **new** (node); p.right.key:= *a*; done = true; endif endif endwhile end insert

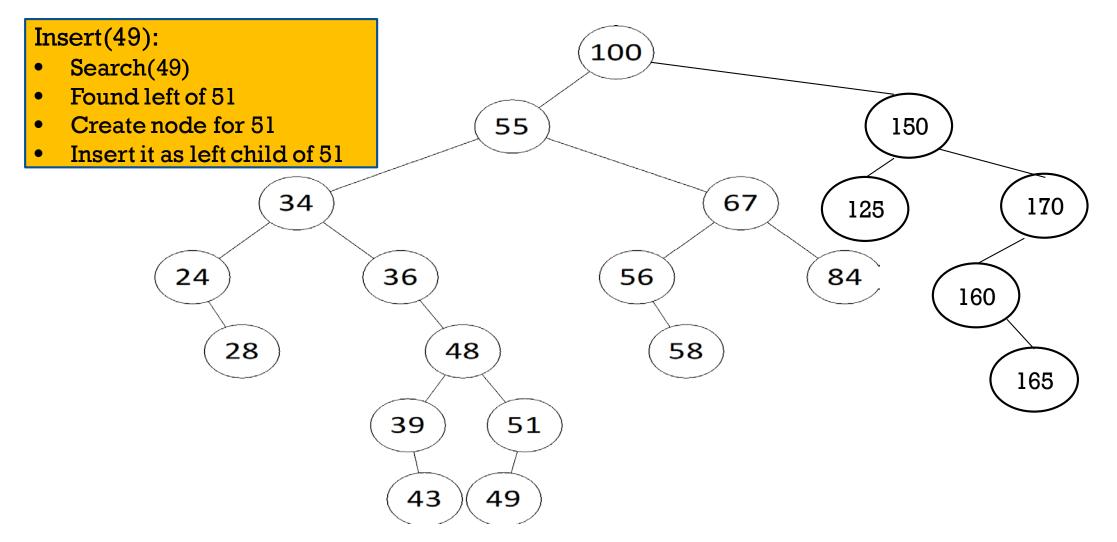
### BINARY SEARCH TREES -- INSERT EXAMPLE (INSERT(51)) --



# BINARY SEARCH TREES -- INSERT EXAMPLE (INSERT(51)) --



### BINARY SEARCH TREES -- INSERT EXAMPLE (INSERT(49)) --



### BINARY SEARCH TREES -- COMPLEXITY OF INSERT --

Recall that:

### Insert(T,a) method

- 1. Search for the **missing** node containing  $a \leftarrow$ 
  - a. keep record of the parent p
  - b. Keep record whether the missing node is a left child or a right child of p



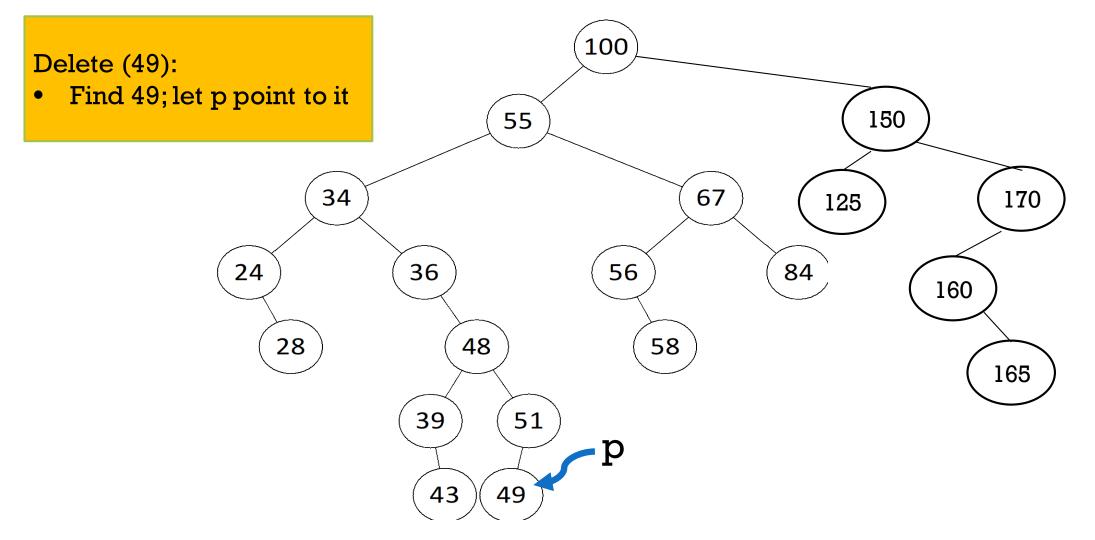
Therefore, time of Insert is: O(h)+O(1) = O(h)

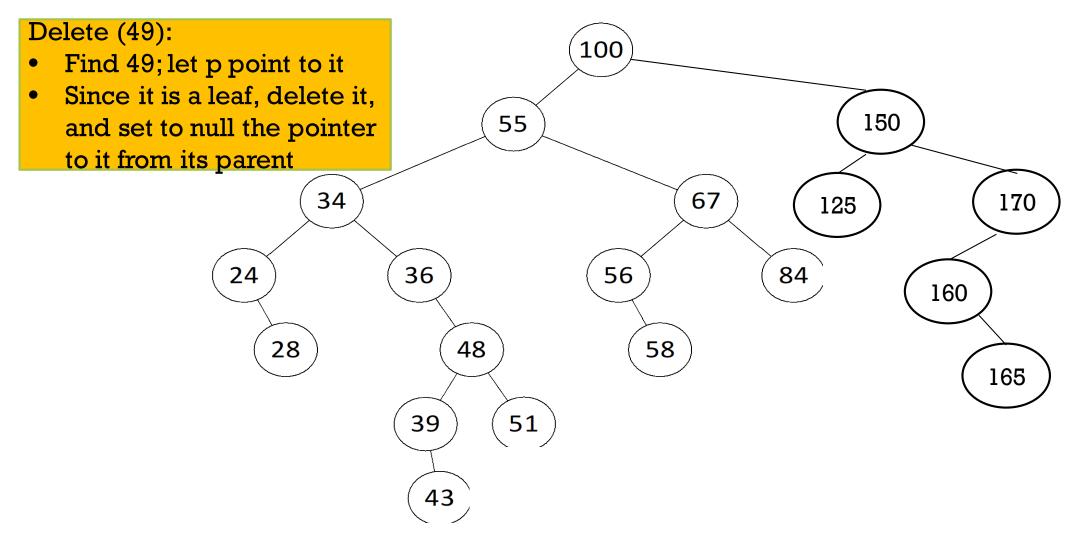
Time: O(h)

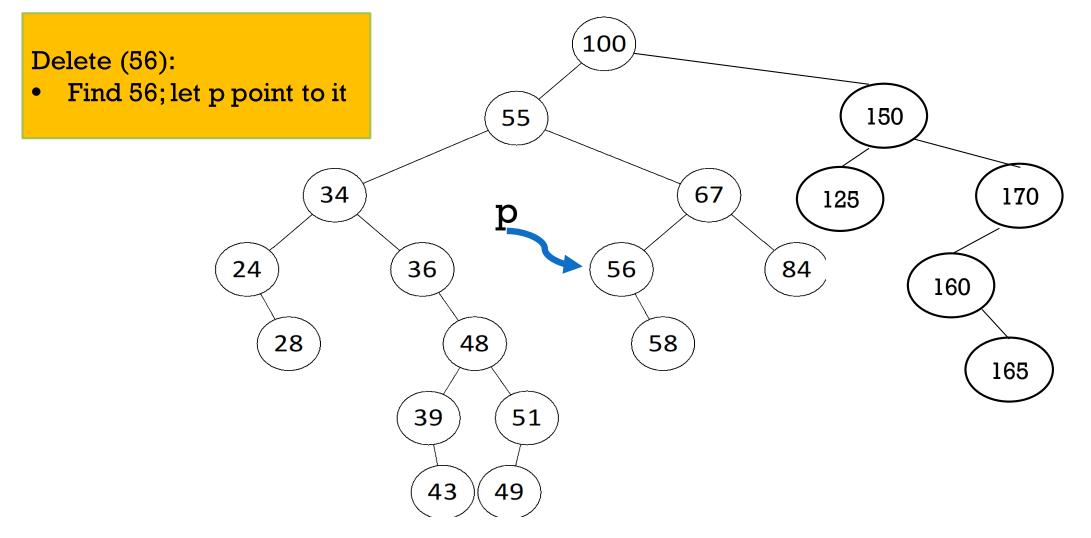
### BINARY SEARCH TREES -- DELETE --

### Procedure delete(T,a)

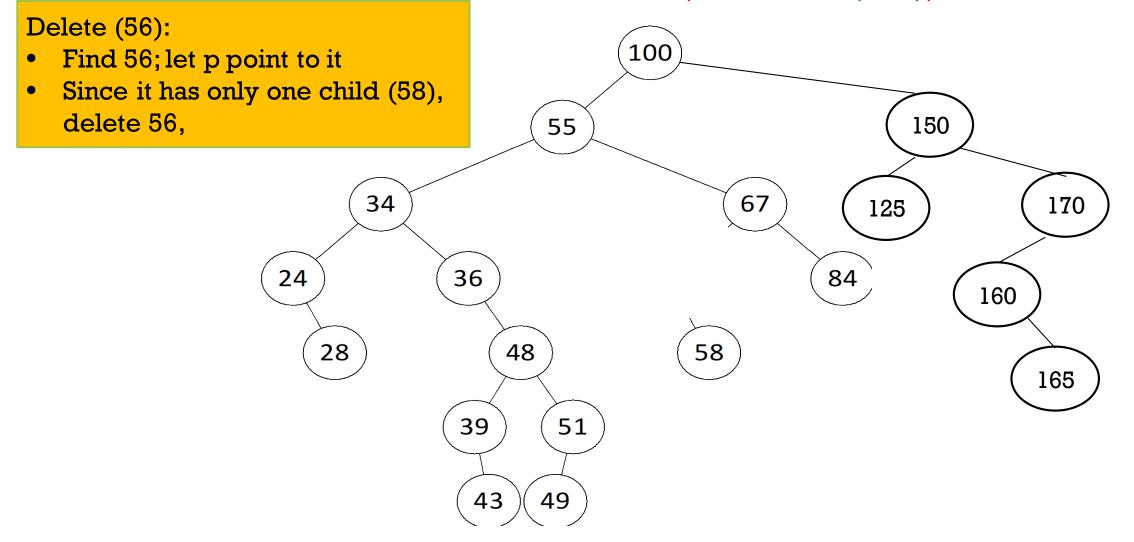
- 1. Search for *a*; if not found, return;
- 2. Let p be the pointer pointing to the node containing a;
- 3. If p is a leaf, remove it (making its parent's corresponding pointer null), and return;
- 4. If p has one child, make that child take the place of node p, and return;
- 5. If p has two children:
  - a. Search for the largest (rightmost) node in the left subtree of p, and call it q;
  - b. Move the key of q to node p; // now q is an empty node
  - c. If q is a leaf, delete and return;
  - d. Else, q has a left child only: bypass it as in step 4, and return;



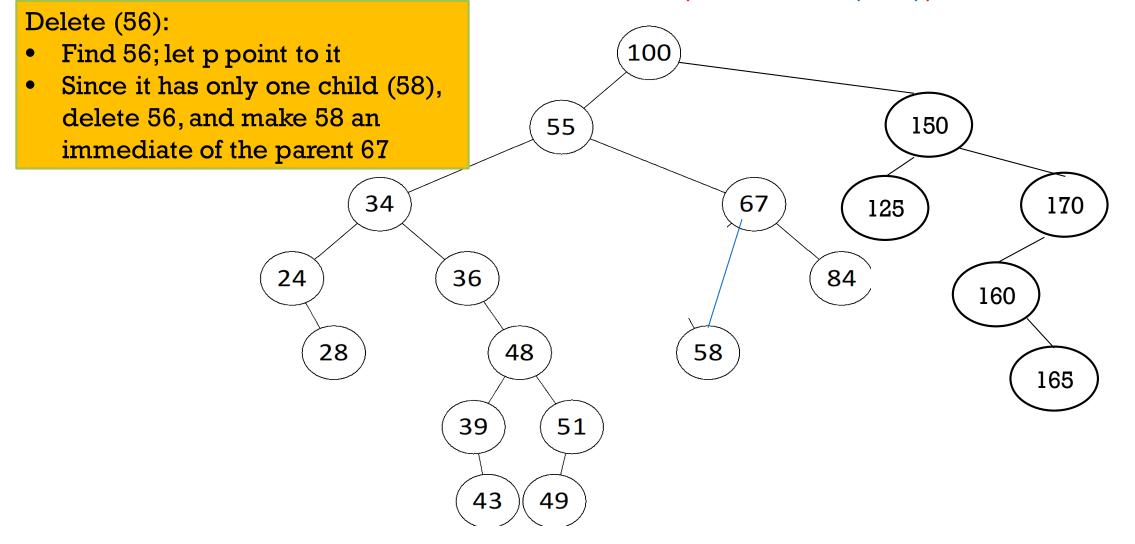


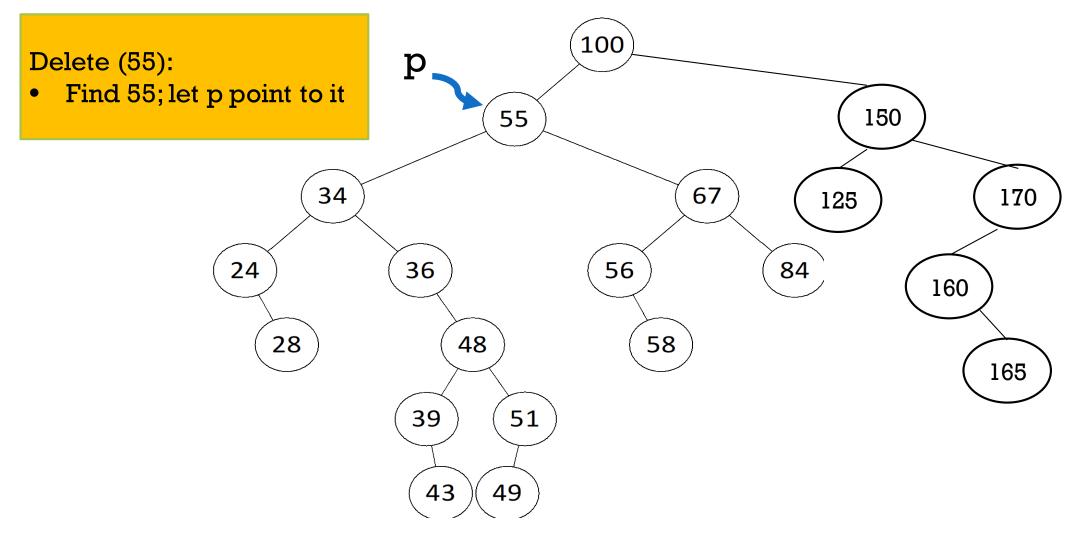


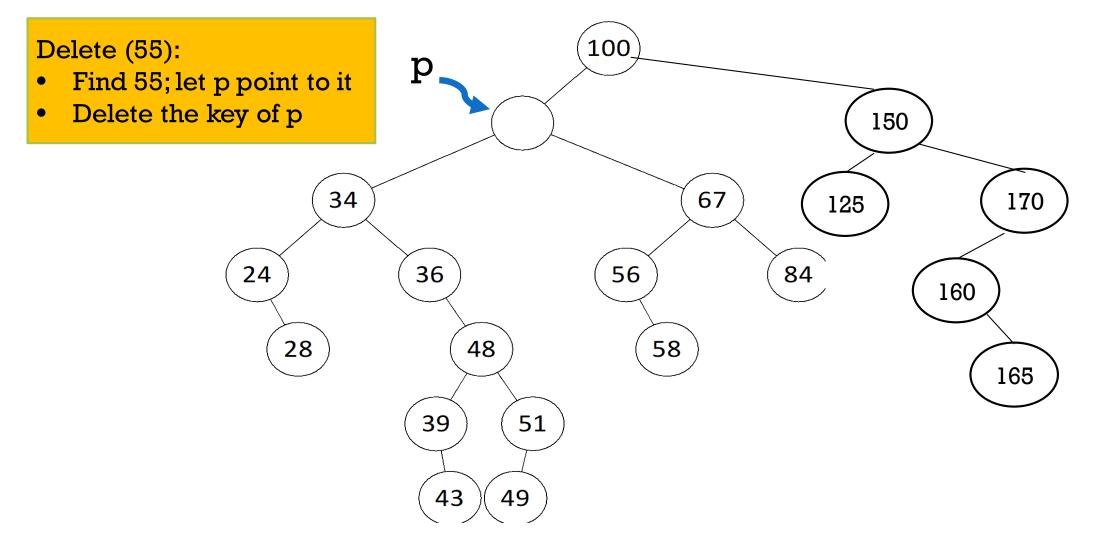
-- DELETE EXAMPLE (DELETE(56)) --

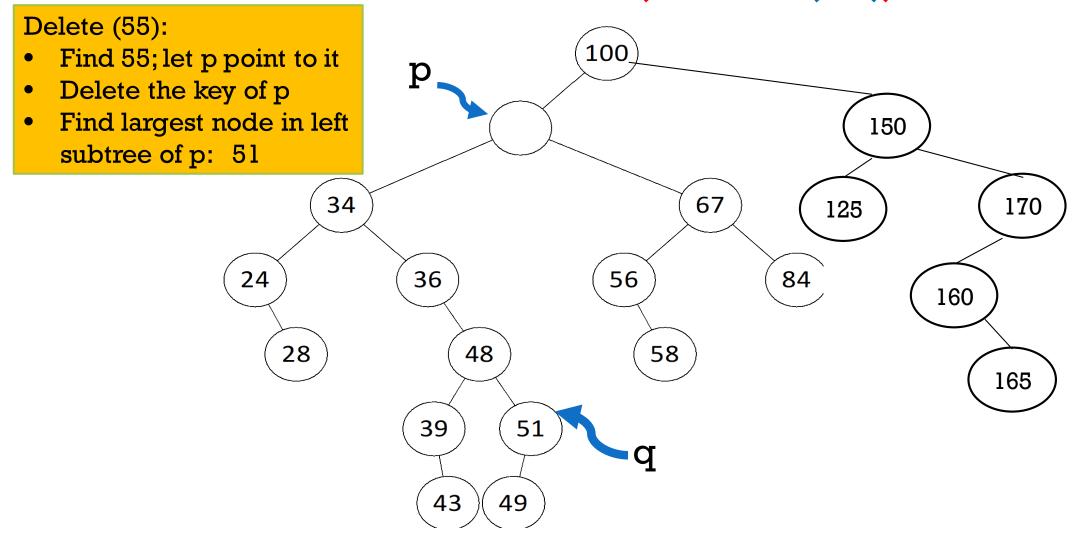


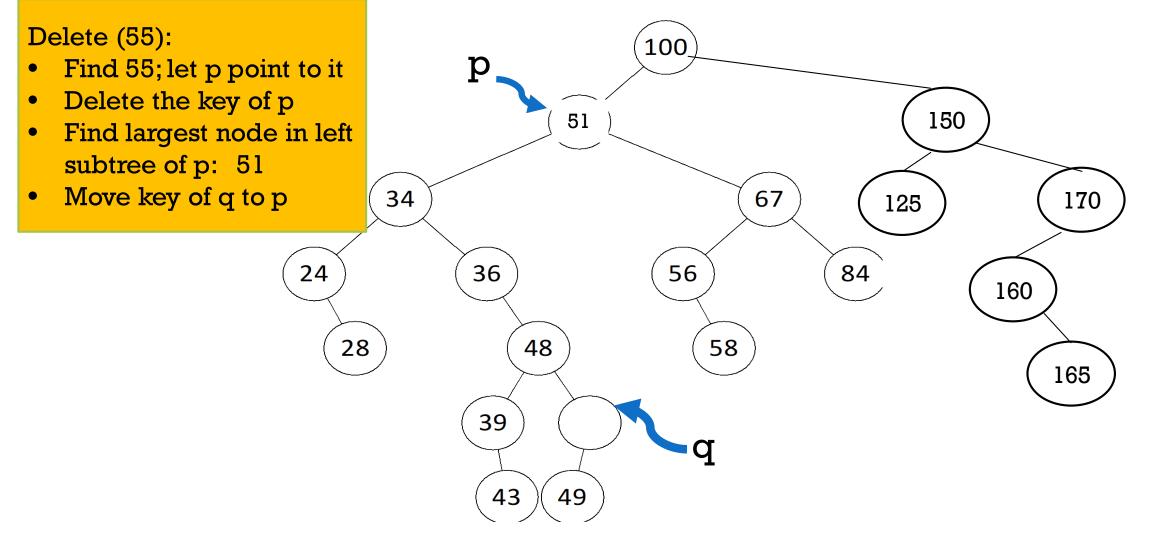
-- DELETE EXAMPLE (DELETE(56)) --











CS 6212 Design and Analysis of Algorithms

#### **Delete (55):** Find 55; let p point to it р Delete the key of p • Find largest node in left subtree of p: 51 Move key of q to p • Bypass q

-- DELETE PSEUDOCODE (1/3) --

```
procedure delete(T,a)
begin
    nodeptr p,q,r,s;
    integer direction;
    \mathbf{p} = \mathbf{T};
    while (p != null and p.key != a) do
         if a < p.key then
              q := p;
              p := p.left;
              direction := 0;
         else
              q := p;
              p := p.right;
              direction := 1;
         endif
    endwhile
```

// continue delete here if **p** == null then return; elseif p.left == null and p.right == null then // p has no children; delete that node if direction == 0 then q.left = null; else q.right = null ; endif free (p); elseif p.left == null then // p has only one child, the right one if direction == 0 then q.left := p.right; //shortcut from parent to grandchild else q.right := p.right; endif

-- DELETE PSEUDOCODE (2/3) --

```
// continue delete here
    elseif p.right == null then
    // p has only one child, the left one
        if direction == 0 then
             q.left := p.left;
        else
             q.right := p.left;
        endif
    else
    // p has two children
    // find the maximum node in the
    // left subtree of p
        s := p.left;
        q := p;
```

// continue delete here
 // now q will be the parent of
 // s , and direction will
 // indicate the type of child s
 // is to q

direction = 0; while s.right != null do q := s; s := s.right; direction := 1; endwhile // Now s points to the maximum node // in the left subtree of p p.key := s.key;

-- DELETE PSEUDOCODE (3/3) --

```
// continue delete here
        // now node s must be deleted. But since s has no right child,
        // the deletion is done by deletion or shortcutting
        if s.left == null then // s is a leaf
             if direction == 0 then q.left := null;
             else q.right := null;
             endif
             free (s);
             return;
                         // s has a left child
        else
             if direction == 0 then q.left := s.left;
             else q.right := s.left;
             endif
             free(s) ; return;
        endif
    endif
end delete
```

### BINARY SEARCH TREES -- COMPLEXITY OF DELETE --

### Procedure delete(T,a)

- 1. Search for a; if not found, return; O(depth<sub>T</sub>(a))=O(depth<sub>T</sub>(p))
- 2. Let p be the pointer pointing to the node containing *a*;
- 3. If p is a leaf, remove it (making its parent's corresponding pointer null), and return; <u>Time: O(1)</u>
- 4. If p has one child, make that child take the place of node p, and return;

Time: O(1)

Time: O(1)

Time: O(1)

Time: O(1)

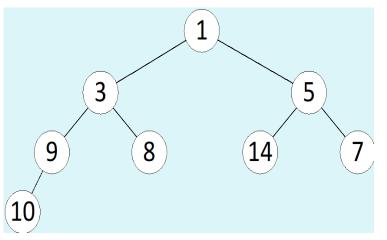
- 5. If p has two children: Time:  $O(depth_T(q) depth_T(p))$ 
  - a. Search for the largest (rightmost) node in the left subtree of p, and call it q;
  - b. Move the key of q to node p; // now q is an empty node
  - c. If q is a leaf, delete and return;
  - d. Else, q has a left child only: bypass it as in step 4, and return; 👡



- **Definition**: A heap H is data structure with a built-in organization where
  - The data is of any type that has a comparator like  $\leq$  (e.g., int, real, String)
  - The organization is an **almost complete binary tree** where for all nodes x:
    - x holds (among its data) a data field called key
    - The key of x is  $\leq$  the keys of its children
  - The operations supported are:
    - **delete-min**(): it finds & deletes the minimum

value m, restores the heap, and returns m.

- **insert**(H,*a*): inserts a new value *a* into the heap
- Notes: the minimum is at the root



For  $\geq$ : it is a max-heap

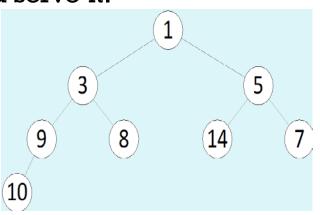
Data Structures



### • A heap implements a **priority queue**

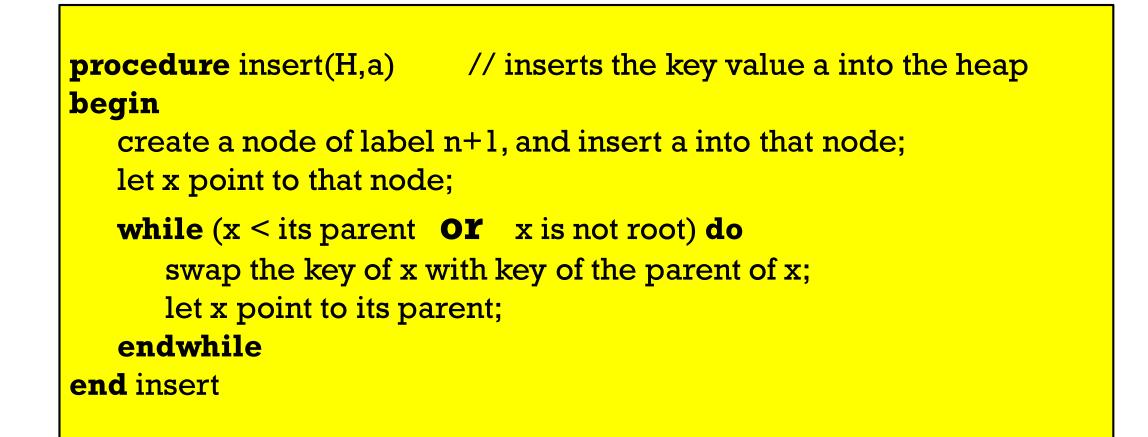
- Unlike the familiar queue which implements "first-come, first serve"
- It implements "first-priority, first serve"
- So, to select (and remove) the next item from the priority queue
  - 1. we look for the item of highest priority/importance (e.g., of priority 1)
  - 2. remove it from the waiting (priority) queue, and serve it.
- That is accomplished using **delete-min()**
- As new items come to the waiting line,

they have to be inserted, using **insert(...)** 



• Operating systems use heaps to prioritize waiting processes

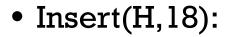




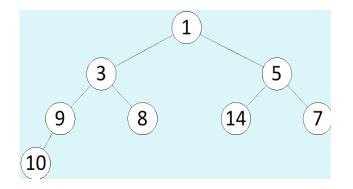
### HEAP

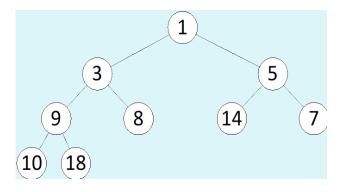
### -- INSERT EXAMPLE (INSERT(H,18))--

• Let H be the following heap:



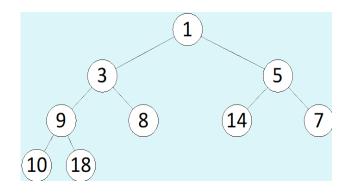
- Put 18 as the next node while preserving the almost-complete structure
- Restore heap: well, 18 is already  $\geq$  its parent
- So, no restoration is needed





## HEAP -- INSERT EXAMPLE ( INSERT(H,4) )--

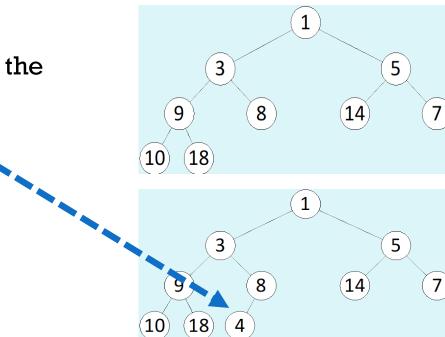
• Insert(H,4):



## HEAP -- INSERT EXAMPLE (INSERT(H,4))--

- Insert(H,4):
  - Put 4 as the next node while preserving the

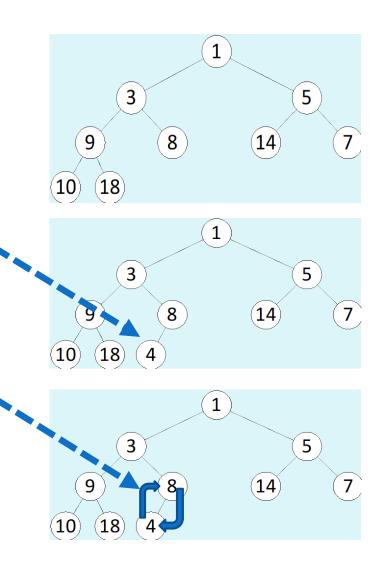
almost-complete structure



## HEAP

#### -- INSERT EXAMPLE (INSERT(H,4))--

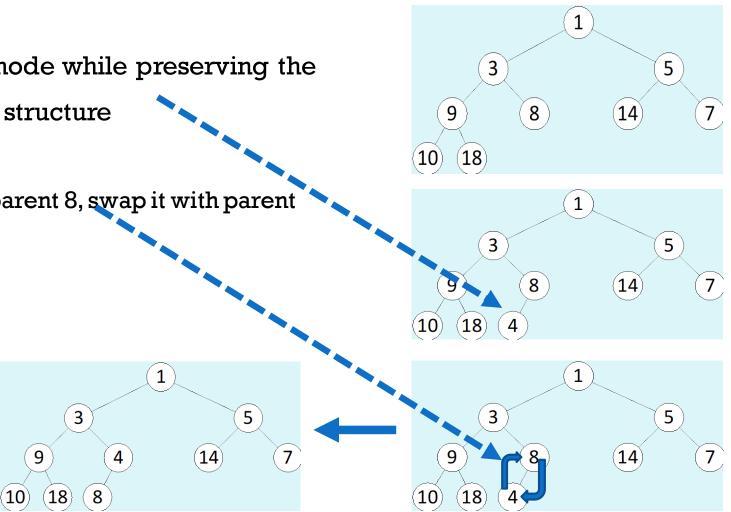
- Insert(H,4):
  - Put 4 as the next node while preserving the almost-complete structure
  - Restore heap:
    - 1. Since 4 < its parent 8, swap it with parent



## **HEAP**

#### -- INSERT EXAMPLE (INSERT(H,4))--

- Insert(H,4):
  - Put 4 as the next node while preserving the almost-complete structure
  - Restore heap:
    - 1. Since 4 < its parent 8, swap it with parent



#### HEAP

#### -- INSERT EXAMPLE (INSERT(H,4))--

5

14

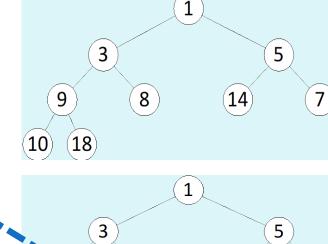
- Insert(H,4):
  - Put 4 as the next node while preserving the almost-complete structure
  - Restore heap:
    - 1. Since 4 < its parent 8, swap it with parent

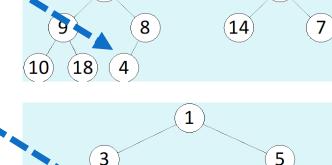
8

(18)

(10)

- 2. Now  $4 \ge its$  new parent 3,
  - So the restoration is complete





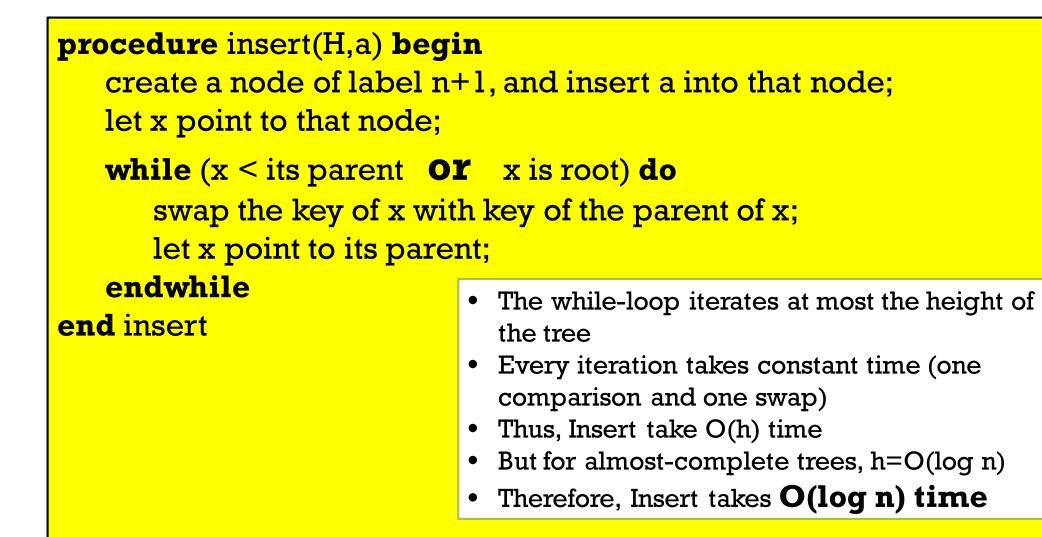
(10)

18

(14)

# HEAPS

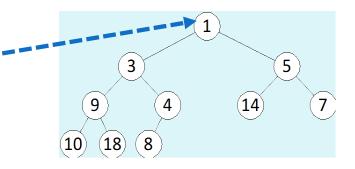
#### -- TIME COMPLEXITY OF INSERT --



# HEAPS -- DELETE-MIN--

```
function delete-min(H) /* H is the heap*/
begin
   x = root of H;
   r=key of x; // to be returned at the end
   remove r from node x;
   take the last node (node n), remove its key (call it b), and store b in the root;
   remove node n;
   // now restore the heap
   while (x has a key bigger than one of its children) do
       swap x with the smaller child;
       make x point to that child;
   end while
   // the while loop will stop when x becomes a leaf or \leq both its children
   return r;
end delete-min
```

- Delete-min()
- The minimum is at the root (of value r=1)



- Delete-min()
- The minimum is at the root (of value r=1)

and remove the last node

• Replace the root value with the value of the last node

5

5

7

(14)

(14)

3

4

4

8

8

9

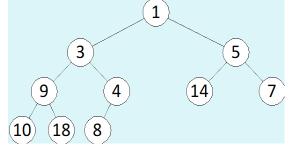
9

(10) (18)

(18)

(**10**)

- Delete-min()
- The minimum is at the root (of value r=1)
- Replace the root value with the value of the last node and remove the last node
- Restore the heap
  - Swap 8 with its smaller child (3) -.



8

3

4

(18)

(18)

(10)

10

5

5

(14)



3

5

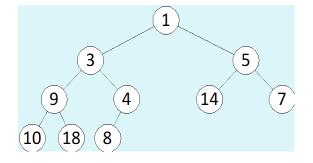
 $(\mathbf{14})$ 

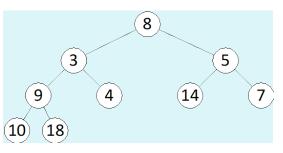
- Delete-min()
- The minimum is at the root (of value r=1)
- Replace the root value with the value of the last node and remove the last node

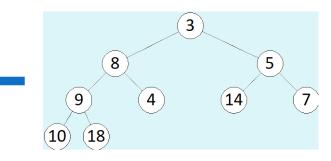
(10)

(18)

- Restore the heap
  - Swap 8 with its smaller child (3)
  - Swap 8 with its smaller child 4
  - Now 8 is a leaf. stop







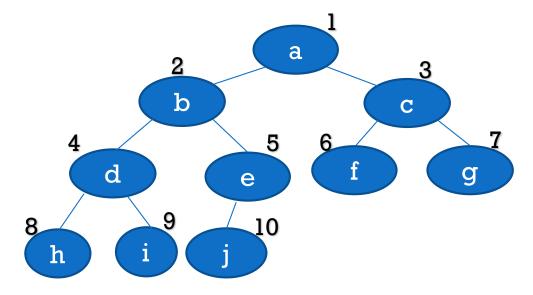
# **HEAPS**

#### -- TIME COMPLEXITY OF DELETE-MIN --

| function delete-min(H)                                                        | Time complexity of delete-min():                                                                                                |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| begin                                                                         | <ul> <li>Before the while loop, there is constant-time work;</li> </ul>                                                         |  |  |  |  |  |  |  |  |
| x= root of H;                                                                 | <ul> <li>The while loop iterates at most the height of the tree<br/>(recall h=O(log n))</li> </ul>                              |  |  |  |  |  |  |  |  |
| r=key of x;                                                                   | <ul> <li>Each iteration takes constant time (swap)</li> </ul>                                                                   |  |  |  |  |  |  |  |  |
| remove r from node x;                                                         | <ul> <li>Therefore, delete-min takes O(h)=O(log n) time</li> </ul>                                                              |  |  |  |  |  |  |  |  |
| take the last node (node                                                      | <ul> <li>Therefore, delete-min takes O(h)=O(log n) time<br/>n), remove its key (call it b), and store b in the root;</li> </ul> |  |  |  |  |  |  |  |  |
| remove node n;                                                                |                                                                                                                                 |  |  |  |  |  |  |  |  |
| // now restore the heap                                                       | // now restore the heap                                                                                                         |  |  |  |  |  |  |  |  |
| while (x has a key bigg                                                       | while (x has a key bigger than one of its children) <b>do</b>                                                                   |  |  |  |  |  |  |  |  |
| swap x with the smaller child;                                                |                                                                                                                                 |  |  |  |  |  |  |  |  |
| make x point to that                                                          | child;                                                                                                                          |  |  |  |  |  |  |  |  |
| end while                                                                     |                                                                                                                                 |  |  |  |  |  |  |  |  |
| // the while loop will stop when x becomes a leaf or $\leq$ both its children |                                                                                                                                 |  |  |  |  |  |  |  |  |
| return r;                                                                     |                                                                                                                                 |  |  |  |  |  |  |  |  |
| end delete-min                                                                |                                                                                                                                 |  |  |  |  |  |  |  |  |

#### IMPLEMENTATION OF HEAPS WITH ARRAYS -- STRUCTURAL CORRESPONDENCE --

- Any almost-complete trees can be stored in an array A
- Node of canonical label i is placed in entry A[i]



| i:   | 1 | 2 | 3 | 4 | 5 | 6 | Z | 8 | 9 | 10 |
|------|---|---|---|---|---|---|---|---|---|----|
| A[i] | a | b | С | d | е | f | g | h | i | j  |

The corresponding array; the data of node i is in A[i]

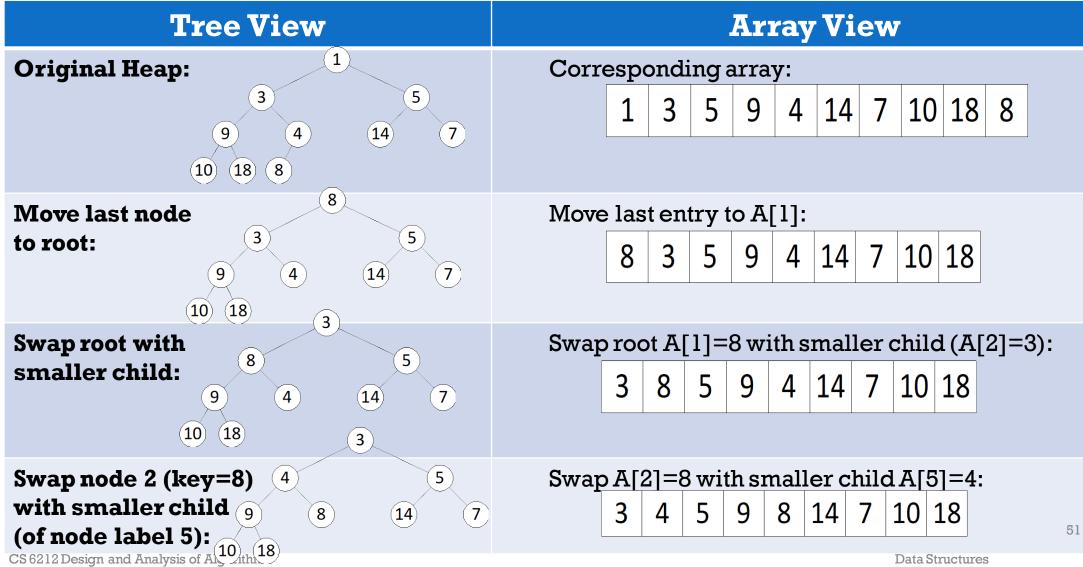
An almost complete binary tree; the canonical labels are outside the nodes; the data are inside the nodes;

#### IMPLEMENTATION OF HEAPS WITH ARRAYS -- NAVIGATION --

- Tree navigation (between parents and children, going to root, or going to last node) can be mirrored in the array
  - The left and right children of node *i* are 2i and 2i + 1, and the parent of *i* is  $\lfloor \frac{i}{2} \rfloor$
  - Going from node *i* to its left/right child is like going from A[i] to A[2i] or A[2i + 1]
  - Going from a node i to its parent is like going from A[i] to A[ $\lfloor \frac{i}{2} \rfloor$ ]
  - The root is at A[1], and the last node (say node n) is at A[n]
  - Thus, for example, swapping nodes *i* and *j* is like swapping A[*i*] and A[*j*]
- Therefore, every step of the insert() and delete-min() can be expressed in terms of the array, and the time complexities stay the same, i.e., O(log n)
- So, the <u>tree</u> can be viewed as a <u>conceptual implementation</u>, while the <u>array</u> can be viewed as the <u>physical implementation</u> of the heap

#### **HEAPS AS ARRAYS**

#### -- ILLUSTRATION: DELETE-MIN()--



## **CREATING A HEAP FROM SCRATCH**

- How long does it take to build a heap of n values from scratch:
  - One method is to call insert(...) n times on an initially empty heap
    - Time:  $O(\log 1 + \log 2 + \log 3 + \dots + \log n) = O(\log n!) = O(n \log n)$ , where the last equality can be proved used Stirling's approximation
- There is an alternative (recursive) method that takes O(n) time
  - We won't cover it in this course, and so you don't need to know the algorithm for that
  - But you need to know that heaps can be constructed in O(n) time

# **USE OF HEAPS FOR SORTING**

- You can use heaps for sorting, i.e., for re-ordering an arbitrary input array into increasing order (i.e., from the smallest to the largest)
- Method:
  - 1. Build the input array into a heap (in time O(n))
  - 2. For i=1 to n do: x=delete-min(); put x next in the output; endfor
- Time:
  - Step 2 takes  $O(\log n + \log(n 1) + \log(n 2) + \dots + \log 1) = O(\log n!) = O(n \log n)$
  - Therefore, total time is:  $O(n) + O(n \log n) = O(n \log n)$

## UNION-FIND DATA STRUCTURE -- DEFINITION --

- Definition:
  - Data: n disjoint sets {1}, {2}, ..., {n}, where each set has initially a single element
  - Operations:
    - **Union**: U(A,B), which unions the two input sets A and B such that after the union, the two old sets A and B are removed from the collection of sets, and replaced by the new set  $C = A \cup B$ .
    - **Find**: F(x), where x is an integer between 1 and n, finds the set that contains x
- Notes:
  - The unions change the collection of sets, but the find(s) do not
  - The sets in the collection are disjoint (non-overlapping) at all times

## UNION-FIND DATA STRUCTURE -- GOAL AND STRATEGY --

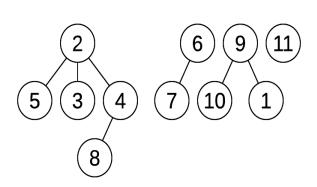
- **Goal**: to design a data structure so that O(n) calls to U and F take as little time as possible
- We will carry out the design of the data structure by having two different representations of the sets: one conceptual and one physical.
- The conceptual representation:
  - Each set is a rooted tree (not necessarily binary) containing the elements of that set
  - The nodes are labeled with the elements of the corresponding set
  - As new sets are born (from Union), we need an automated naming system
- The physical representation will be derived a little later

#### UNION-FIND DATA STRUCTURE -- EXAMPLE OF TREE REPRESENTATION--

- Suppose we have 11 elements: 1, 2, 3, ..., 11
- Suppose after a few unions, the collection of sets is:

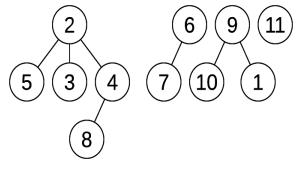
 $\{2,3,4,5,8\}, \{6,7\}, \{1,9,10\}, and \{11\}$ 

- The tree representation of the data structure can be:
  - One tree per set: the tree contains the elements of its set
  - We **don't care** about the structure of each tree
  - But we care what elements are in each tree
- We need a set-naming mechanism that gives a unique name to each set, including to new sets that emerge out of Union
- Naming scheme: Let the <u>root label</u> <u>double</u> as the <u>label for that set</u>

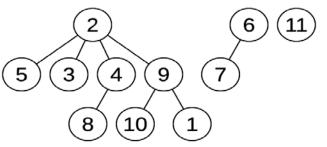


## UNION-FIND DATA STRUCTURE -- FIRST IMPLEMENTATION (UNION) --

- U(A,B) can be done by "a single stroke"
  - Make the root of A to be the parent of the root of B
  - Note that the trees of A and B stop existing separately, and are replaced by the new tree, which is what we want
- Example:
  - Do U(2,9) when the collection is:

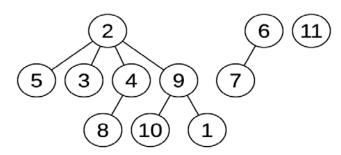


- This unions the tree rooted at 2 with the tree rooted at 9, which is like,  $U(\{2,3,4,5,8\},\{1,9,10\})$
- The result, derived by making 2 the parent of 9:



#### UNION-FIND DATA STRUCTURE -- FIRST IMPLEMENTATION (FIND) --

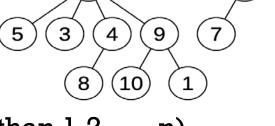
- F(x) needs to return the name of the set containing element (int) x
- The name of that set is the label of the root of the corresponding tree
- We can find that root by:
  - Moving up from x to its parent, and from that to its parent, and so on until we get to the root, which has no parent
  - Return that root.
- Example: F(10)
  - Parent of 10 is 9
  - Parent of 9 is 2



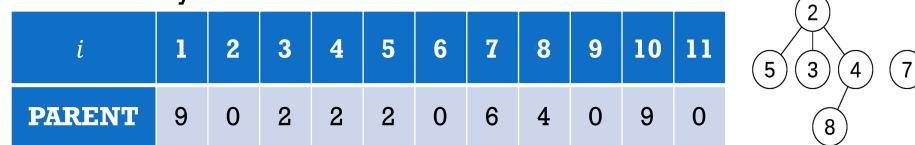
 Parent of 2 doesn't exit => 2 is the root => return 2 (which means that the set that contains 10 is set 2)

#### UNION-FIND DATA STRUCTURE -- FIRST <u>PHYSICAL</u> IMPLEMENTATION --

- We can implement the collections of trees (we call it **forest**) by using general tree representations (using node records and pointers)
- But there is a better, cheaper representation, which we'll derive next
- Note that in both the Union and Find that we just did, we only needed to refer to **parents** of nodes (never to children), and to know which is root
- So, if we use a physical representation that stores the parent of each node and that signals which nodes are root, that representation is adequate for implementing U and F (2) (6) (1)
- Answer: a single array PARENT[1:n] where
  - PARENT[i] stores the parent of node i
  - If i is a root, set PARENT[i]=0 (or any number other than 1,2,...,n)



- -- FIRST PHYSICAL IMPLEMENTATION: PARENT ARRAY --
- PARENT array of this collection:



- Note: at the beginning, PARENT[i]=0 for all i, because each set is a single node, and so, that node is root.
- Implementation of U and F
   Be
   using PARENT:
   En

| Procedure U(i,j)<br>Begin<br>PARENT[j]=i;<br>End U | Function F(x)<br>begin<br>int r=x;<br>while PARE<br>r = PAR | <ul> <li>Time: O(h)</li> <li>h= height of tree</li> <li>NT[r] &gt; 0) <b>do</b></li> <li>ENT[r];</li> </ul> |  |  |  |
|----------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|
| • Time:O(1)                                        | endwhile /<br>return (r);<br>end                            | / now r is a root                                                                                           |  |  |  |

6

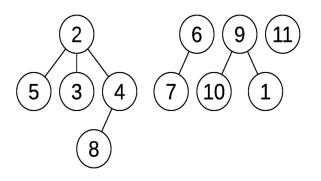
(10)

9

11

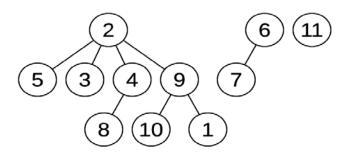
- -- FIRST PHYSICAL IMPLEMENTATION: U(2,9) AND F(10) --
- PARENT array of this collection before U(2,9):

| i      | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|--------|---|---|---|---|---|---|---|---|---|----|----|
| PARENT | 9 | 0 | 2 | 2 | 2 | 0 | 6 | 4 | 0 | 9  | 0  |



• U(2,9): PARENT[9]=2, which results in this array:

| i      | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|--------|---|---|---|---|---|---|---|---|---|----|----|
| PARENT | 9 | 0 | 2 | 2 | 2 | 0 | 6 | 4 | 2 | 9  | 0  |



- F(10):
  - PARENT[10] == 9  $\rightarrow$  PARENT[9] == 2  $\rightarrow$  PARENT[2]==0  $\rightarrow$  2 is the root
  - Therefore, the set returned by F(10) is set 2, which is correct

- -- 1<sup>ST</sup> IMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--
  - Each Union takes O(1) time, so O(n) U's take O(n) time
  - Each Find takes O(h), but how bad can h be?
    - Answer: it can be as bad as O(n), which makes O(n) calls to F take  $O(n^2)$  time
    - Proof:
      - Take this sequence of calls:  $U(2,1), U(3,2), U(4,3), \dots, U(n, n-1), F(1), F(2), \dots, F(n)$
      - The calls to U create a single-path tree: n, n-1, n-2, ..., 2, 1 (prove that to yourself)
      - The depth of node (i) is n-i, for all i
      - Thus, each F(i) takes O(n-i) time
      - Therefore, the n calls to F take:  $O(1+2+...+(n-1))=O(n(n-1)/2)=O(n^2)$
  - $O(n^2)$  can be quite costly: check if n = 1 Mil, on a computer that executes 1MFLOP (1 million operations/second), what is  $O(n^2)$  be in real time?

#### UNION-FIND DATA STRUCTURE -- SECOND IMPLEMENTATION --

- **Issue**: the reason we could get such long thin trees is
  - U(i,j) makes i the parent of j regardless of how small tree i is
- **Remedy**: Make the **<u>root</u>** of the bigger tree the **<u>parent</u>** of the other root
- **Issue**: This requires that we compute (or keep track of) the size of each tree
- **Remedy**: If i is a root, let PARENT[i] store the number of nodes in tree rooted at i
- **Issue**: If PARENT[i]==3, Is 3 the parent of i or # nodes in tree rooted at i?
- **Remedy**: For root *i*, make **PARENT**[i] = -(**number of nodes in tree of** *i***)**
- **Issue**: How to efficiently update tree size while doing unions?
- **Remedy**: When making i parent of j, the new tree of i has the sum of nodes of the two old trees: PARENT[i]:=PARENT[i]+PARENT[j], which takes O(1) time!!

-- 2<sup>ND</sup> IMPLEMENTATION (UNION) --

• PARENT array of this collection:



#### **Procedure** U(i,j)

- At the start, PARENT[i] =  $-1 \forall i$ , why? Begin
- Implementation of U:
- How about Find F: same as before
- Time of U: O(1)

```
if |PARENT[i]| >= |PARENT[j]| then
        PARENT[i]=PARENT[i]+PARENT[j];
        PARENT[j]=i;
else
        PARENT[j]=PARENT[i]+PARENT[j];
```

```
PARENT[i]=j;
endif
```

#### End U

9

6

4

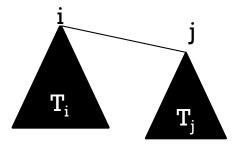
8

(10)

(11)

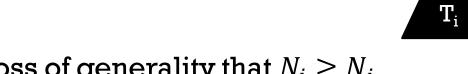
- -- 2<sup>ND</sup> IMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--
  - Each Union takes O(1) time, so O(n) U's take O(n) time
  - Each Find F(x) takes O(h), but how bad can h be?
    - **Theorem**:  $h_x \leq \log N_x$  where  $h_x$  and  $N_x$  are the height and # nodes in the tree containing x
    - Proof: next slide

- -- 2<sup>ND</sup> IMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--
  - Theorem:  $h_x \leq \log N_x$  for all x.
  - Proof: By induction on the number of U's that created the tree of x (call it  $T_x$ )
    - Call m that number of calls to U
    - Basis: m=0.Then  $T_x$  is a 1-node tree, i.e.,  $N_x$ =1 and  $h_x$ =0.Since log  $N_x$ =log 1=0, it follows that  $h_x$ =log  $N_x$  and thus  $h_x \le \log N_x$  in the basis case.
    - Induction: Assume that  $h_y \le \log N_y$  for all trees created after m-1 calls to U, and let  $T_x$  be in a tree created from m calls to U. Prove that  $h_x \le \log N_x$ .
    - Suppose the m<sup>th</sup> call to U is U(i,j), and let T<sub>i</sub> and T<sub>j</sub> be the trees rooted at i and j before that call to U.
    - Those two trees were created by at most m-1 calls to U, so by the induction hypothesis,  $h_i \leq \log N_i$  and  $h_i \leq \log N_i$



# **CONTINUATION OF THEOREM PROOF**

- -- 2<sup>ND</sup> IMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--
  - Proof continuation:
    - Recall that  $T_x$  is the whole tree shown to the right
    - $N_x = N_i + N_j$

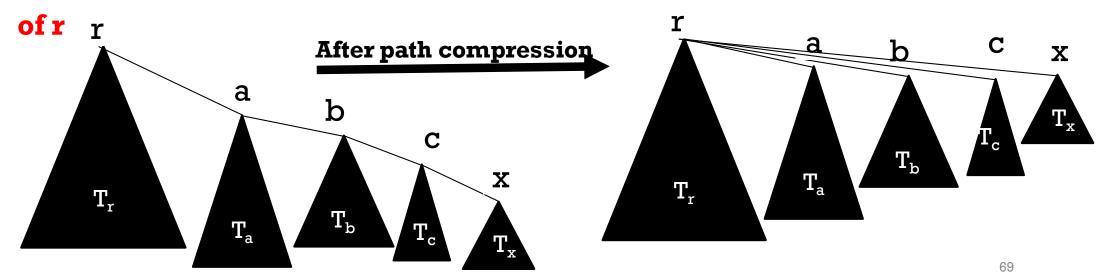


- We're assuming without loss of generality that  $N_i \ge N_j$
- $h_x = \max(h_i, 1 + h_j) \le \max(\log N_i, 1 + \log N_j) = \max(\log N_i, \log 2 + \log N_j)$
- $h_x \leq \max(\log N_i, \log 2 + \log N_j) = \max(\log N_i, \log(2N_j))$
- Now,  $2N_j = N_j + N_j \le N_i + N_j = N_x \Rightarrow \log(2N_j) \le \log N_x$
- Also,  $N_i \le N_i + N_j = N_x \Rightarrow \log N_i \le \log N_x$
- From the previous 3 bullets, we get:  $h_x \le \max(\log N_i, \log(2N_j)) \le \log N_x$
- Therefore,  $h_x \leq \log N_x$ , which is what we needed to prove. Q.E.D.

- -- 2<sup>ND</sup> IMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--
  - Each Union takes O(1) time, so O(n) U's take O(n) time
  - Each Find F(x) takes  $O(h_x) = O(\log N_x) = O(\log n)$
  - Therefore, O(n) F's take  $O(n \log n)$  time
  - Conclusion: O(n) calls to U and F take  $O(n + n \log n) = O(n \log n)$  time
  - That is much better than  $O(n^2)$  time

## UNION-FIND DATA STRUCTURE -- THIRD IMPLEMENTATION: PATH COMPRESSION --

- Can we do better?
- Yes: Keep U as in the 2<sup>nd</sup> implementation, but speed up F
- How? Path Compression
  - Call F(x) tracing the path from x to the root (call it r)
  - Trace that path again, making each node along the way an **immediate child**



-- 3<sup>RD</sup> IMPLEMENTATION: PSEUDOCODE OF FIND --

```
Function F(x)
begin
       int r,s,t;
       r=x;
       while PARENT[r] > 0 do r = PARENT[r];endwhile
       //now r is a root
       s=x; // s will trace the path from x to the root r
       while s != r do
              t := s; // t records the current value of s before s steps to its parent
              s := PARENT[s];
              PARENT[t] := r; // make t an immediate child of root r
       endwhile
       return(r);
End F
```

- -- 3<sup>RD</sup> IMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--
  - **Theorem**: Every O(n) sequence of calls to U's and F's take O(n G(n)) time where  $G(n) \le 5 \forall n \le 2^{65000}$ .
  - We won't give a proof for that.
  - So, for all practical values of n,  $G(n) \le 5$ , and so practically the sequence of calls takes O(n) time.