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OBJECTIVES OF THIS LECTURE

By the end of this lecture, you will be able to:

• Describe binary search trees (BSTs) and heaps

• Explain the algorithms for insert, search and delete operations in BSTs, 
and derive their time complexities

• Explain the algorithms of the delete-min and insert operation in heaps, 
and prove their logarithmic time complexity

• Step through a comprehensive, non-trivial data-structure design process 
(for Union-Find), along with progressive enhancements

• Distinguish yet relate between conceptual and physical implementations
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OUTLINE

• Binary Search Trees: Structure, operations, and time complexities

• Heaps: Structure, operations, array implementations, and time 
complexities

• Union-Find Data Structure: 

• Specs

• Conceptual and physical implementations

• Three successively better implementations and their time analysis
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BINARY SEARCH TREES
-- DEFINITION --

• Definition:A binary search trees (BST) T is data structure with a built-in  
organization where

• The data is of any kind that has a comparator like ≤ (e.g., int, real, String)

• The organization is a binary tree where for every node x:

• x holds (among its data) a data field called key

• all the nodes in the left subtree of x have keys that are ≤ the key of x, and 

• all the nodes in the right subtree of x have keys that are > the key of x.

• The operations supported are: search (a), insert (a),  delete (a)
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BINARY SEARCH TREES
-- EXAMPLE--
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BINARY SEARCH TREES
-- SEARCH --

Function search(T,a)  // T is a nodeptr to the root node record
begin

nodeptr p;
p=T;
while (p != null and p.key != a) do

if a < p.key then
p := p.left;

else
p := p.right;

endif

endwhile
return (p);

end search
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record node
begin

generic key;
nodeptr left;
nodeptr right;

end

key

left right



BINARY SEARCH TREES
-- EXAMPLE--
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• 160?100: 160>100 => go right



BINARY SEARCH TREES
-- EXAMPLE--
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Search(160):
• 160?100:    160>100 => go right
• 160?150 :   160>150 => go right



BINARY SEARCH TREES
-- EXAMPLE--
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Search(11600):
• 160?100:    160>100 => go right
• 160?150 :   160>150 => go right
• 160?170 :   160<170 => go left



found

BINARY SEARCH TREES
-- EXAMPLE--
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Search(11600):
• 160?100:    160>100 => go right
• 160?150 :   160>150 => go right
• 160?170 :   160<170 => go left
• 160?160:    160==160 => found



BINARY SEARCH TREES
-- SEARCH TIME COMPLEXITY--

• Search(T,a) takes as many comparisons as 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ𝑇𝑇 𝑎𝑎 + 1 = 𝑂𝑂 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑇𝑇 + 1 = 𝑂𝑂 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑇𝑇 + 1 = 𝑂𝑂(ℎ + 1) = 𝑂𝑂(ℎ)

• Therefore, search takes 𝑂𝑂(ℎ) time 
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BINARY SEARCH TREES
-- INSERT --
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• Insert(T,𝑎𝑎) method
1. Search for the missing node containing 𝑎𝑎

a. keep record of the parent p

b. Keep record whether the missing node is a left child or a right child of p

2. Create a new node q, and put 𝑎𝑎 in it
a. Have p point to q



BINARY SEARCH TREES
-- INSERT --

procedure insert(T,𝑎𝑎) 
begin

nodeptr p;
p=T;
Bool done = false;
while not done do

if a <= p.key then
if p.left != null then

p = p.left;
else

p.left = new (node);
p.left.key = 𝑎𝑎;
done =true;

endif

// Continue insert here
else

if p.right != null then
p = p.right;

else
p.right = new (node);
p.right.key:= 𝑎𝑎;
done = true;

endif
endif

endwhile
end insert 
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BINARY SEARCH TREES
-- INSERT EXAMPLE (INSERT(51)) --
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Insert(51)
• Find the missing node of 51
• It is to the right of 48
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BINARY SEARCH TREES
-- INSERT EXAMPLE (INSERT(51)) --
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Insert(51)
• Find the missing node of 51
• It is to the right of 48
• Create a new node for 51
• Make new node right child of 48

51
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BINARY SEARCH TREES
-- INSERT EXAMPLE (INSERT(49)) --
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Insert(49):
• Search(49)
• Found left of 51
• Create node for 51
• Insert it as left child of 51



BINARY SEARCH TREES
-- COMPLEXITY OF INSERT --
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Recall that:

Insert(T,𝑎𝑎) method
1. Search for the missing node containing 𝑎𝑎

a. keep record of the parent p

b. Keep record whether the missing node is a left child or a right child of p

2. Create a new node q, and put 𝑎𝑎 in it 
a. Have p point to q

Time: O(h)

Time: O(1)

Time: O(1)

Therefore, time of Insert is: O(h)+O(1) = O(h)



BINARY SEARCH TREES
-- DELETE --

Procedure delete(T,𝑎𝑎)
1. Search for 𝑎𝑎; if not found, return;

2. Let p be the pointer pointing to the node containing 𝑎𝑎;

3. If p is a leaf, remove it (making its parent’s corresponding pointer 
null), and return;

4. If p has one child, make that child take the place of node p, and return;

5. If p has two children:
a. Search for the largest (rightmost) node in the left subtree of p, and call it q;

b. Move the key of q to node p; // now q is an empty node

c. If q is a leaf, delete and return;

d. Else, q has a left child only: bypass it as in step 4, and return;
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BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(49)) --
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Delete (49):
• Find 49; let p point to it

p



BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(49)) --
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Delete (49):
• Find 49; let p point to it
• Since it is a leaf, delete it, 

and set to null the pointer 
to it from its parent



BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(56)) --
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Delete (56):
• Find 56; let p point to it

p



BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(56)) --
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Delete (56):
• Find 56; let p point to it
• Since it has only one child (58), 

delete 56, 



BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(56)) --
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Delete (56):
• Find 56; let p point to it
• Since it has only one child (58), 

delete 56, and make 58 an 
immediate of the parent 67



BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(55)) --
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Delete (55):
• Find 55; let p point to it

p



BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(55)) --
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Delete (55):
• Find 55; let p point to it
• Delete the key of p

p



BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(55)) --
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Delete (55):
• Find 55; let p point to it
• Delete the key of p
• Find largest node in left 

subtree of p:   51

p

q



BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(55)) --
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Delete (55):
• Find 55; let p point to it
• Delete the key of p
• Find largest node in left 

subtree of p:   51
• Move key of q to p

p

q

51



BINARY SEARCH TREES
-- DELETE EXAMPLE (DELETE(55)) --
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Delete (55):
• Find 55; let p point to it
• Delete the key of p
• Find largest node in left 

subtree of p:   51
• Move key of q to p
• Bypass q

p
51



BINARY SEARCH TREES
-- DELETE PSEUDOCODE (1/3) --

procedure  delete(T,a)
begin 

nodeptr p,q,r,s; 
integer  direction; 
p = T; 
while  (p != null and p.key != a) do 

if a < p.key then 
q := p; 
p := p.left; 
direction := 0; 

else 
q := p; 
p := p.right; 
direction := 1; 

endif
endwhile

// continue delete here
if p == null then return; 
elseif p.left == null and p.right == null then

// p has no children; delete that node
if direction == 0 then q.left = null; 
else q.right = null ;
endif
free (p); 

elseif p.left == null then 
// p has only one child, the right one  
if direction == 0 then q.left := p.right; 

//shortcut from parent to grandchild
else q.right := p.right; 
endif
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BINARY SEARCH TREES
-- DELETE PSEUDOCODE (2/3) --

// continue delete here
elseif p.right == null then 
// p has only one child, the left one 

if direction == 0 then 
q.left := p.left; 

else 
q.right := p.left; 

endif
else
// p has two children
// find the maximum node in the 
// left subtree of p  

s := p.left; 
q := p;

// continue delete here
// now q will be the parent of 
// s , and direction will 
// indicate the type of child s 
// is to q 

direction = 0; 
while s.right != null do 

q := s; 
s := s.right; 
direction := 1; 

endwhile
// Now s points to the maximum node 
// in the left subtree of p 
p.key := s.key; 

CS 6212 Design and Analysis of Algorithms                                                                                    Data Structures 30



BINARY SEARCH TREES
-- DELETE PSEUDOCODE (3/3) --

// continue delete here
// now node s must be deleted. But since s has no right child, 
// the deletion is done by deletion or shortcutting 
if s.left == null then // s is a leaf

if direction == 0 then q.left := null; 
else q.right := null; 
endif
free (s); 
return; 

else // s has a left child 
if direction == 0 then q.left := s.left; 
else q.right := s.left; 
endif
free(s) ; return; 

endif
endif

end delete
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BINARY SEARCH TREES
-- COMPLEXITY OF DELETE --

Procedure delete(T,𝑎𝑎)
1. Search for 𝑎𝑎; if not found, return;

2. Let p be the pointer pointing to the node containing 𝑎𝑎;

3. If p is a leaf, remove it (making its parent’s corresponding pointer 
null), and return;

4. If p has one child, make that child take the place of node p, and return;

5. If p has two children:
a. Search for the largest (rightmost) node in the left subtree of p, and call it q;

b. Move the key of q to node p; // now q is an empty node

c. If q is a leaf, delete and return;

d. Else, q has a left child only: bypass it as in step 4, and return;
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Time: O(1)

Time: O(depthT(q)- depthT(p))

Time: O(1)

Time: O(1)

Time: O(1)

Therefore, Delete Time: O(depthT(p))+ O(depthT(q)- depthT(p)) +O(1)=O(depthT(q))=O(h)

Time: 
O(depthT(𝑎𝑎))=O(depthT(p))

Time: O(1)



HEAPS
-- DEFINITION --

• Definition: A heap H is  data structure with a built-in  organization 
where

• The data is of any type that has a comparator like ≤ (e.g., int, real, String)

• The organization is an almost complete binary tree where for all nodes x:

• x holds (among its data) a data field called key

• The key of x is ≤ the keys of its children

• The operations supported are: 

• delete-min(): it finds & deletes  the minimum 

value m, restores the heap, and returns m.

• insert(H,𝑎𝑎): inserts a new value 𝑎𝑎 into the heap

• Notes: the minimum is at the root
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• For ≤: it is min-heap
• For ≥: it is a max-heap 



HEAPS
-- USES--

• A heap implements a priority queue

• Unlike the familiar queue which implements “first-come, first serve”

• It implements “first-priority, first serve”

• So, to select (and remove) the next item from the priority queue

1. we look for the item of highest priority/importance (e.g., of priority 1)

2. remove it from the waiting (priority) queue, and serve it.

• That is accomplished using delete-min()

• As new items come to the waiting line,

they have to be inserted, using insert(…)

• Operating systems use heaps to prioritize waiting processes
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HEAPS
-- INSERT --
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procedure insert(H,a)         // inserts the key value a into the heap
begin

create a node of label n+1, and insert a into that node;
let x point to that node;

while (x < its parent   or x is not root) do
swap the key of x with key of the parent of x;
let x point to its parent;

endwhile
end insert



HEAP  
-- INSERT EXAMPLE ( INSERT(H,18) )--

• Let H be the following heap:

• Insert(H,18):
• Put 18 as the next node while preserving the

almost-complete structure

• Restore heap: well, 18 is already ≥ its parent

• So, no restoration is needed
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HEAP  
-- INSERT EXAMPLE ( INSERT(H,4) )--

• Insert(H,4):
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HEAP  
-- INSERT EXAMPLE ( INSERT(H,4) )--

• Insert(H,4):
• Put 4 as the next node while preserving the

almost-complete structure
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HEAP  
-- INSERT EXAMPLE ( INSERT(H,4) )--

• Insert(H,4):
• Put 4 as the next node while preserving the

almost-complete structure

• Restore heap: 

1. Since 4 < its parent 8, swap it with parent
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HEAP  
-- INSERT EXAMPLE ( INSERT(H,4) )--

• Insert(H,4):
• Put 4 as the next node while preserving the

almost-complete structure

• Restore heap: 

1. Since 4 < its parent 8, swap it with parent
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HEAP  
-- INSERT EXAMPLE ( INSERT(H,4) )--

• Insert(H,4):
• Put 4 as the next node while preserving the

almost-complete structure

• Restore heap: 

1. Since 4 < its parent 8, swap it with parent

2. Now 4 ≥ its new parent 3,

So the restoration is complete
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HEAPS
-- TIME COMPLEXITY OF INSERT --
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procedure insert(H,a) begin
create a node of label n+1, and insert a into that node;
let x point to that node;

while (x < its parent   or x is root) do
swap the key of x with key of the parent of x;
let x point to its parent;

endwhile
end insert

• The while-loop iterates at most the height of 
the tree

• Every iteration takes constant time (one 
comparison and one swap)

• Thus, Insert take O(h) time
• But for almost-complete trees, h=O(log n)
• Therefore, Insert takes O(log n) time



HEAPS
-- DELETE-MIN--
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function delete-min(H) /* H is the heap*/
begin

x= root of H;
r=key of x; // to be returned at the end
remove r from node x;
take the last node (node n), remove its key (call it b), and store b in the root;
remove node n;
// now restore the heap
while (x has a key bigger than one of its children) do

swap x with the smaller child;
make x point to that child;

end while
// the while loop will stop when x becomes a leaf or  ≤ both its children
return r;

end delete-min 



HEAPS
-- EXAMPLE OF DELETE-MIN() --

• Delete-min()

• The minimum is at the root (of value r=1)
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HEAPS
-- EXAMPLE OF DELETE-MIN() --

• Delete-min()

• The minimum is at the root (of value r=1)

• Replace the root value with the value of the last node

and remove the last node
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HEAPS
-- EXAMPLE OF DELETE-MIN() --

• Delete-min()

• The minimum is at the root (of value r=1)

• Replace the root value with the value of the last node

and remove the last node

• Restore the heap

• Swap 8 with its smaller child (3)
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HEAPS
-- EXAMPLE OF DELETE-MIN() --

• Delete-min()

• The minimum is at the root (of value r=1)

• Replace the root value with the value of the last node

and remove the last node

• Restore the heap

• Swap 8 with its smaller child (3)

• Swap 8 with its smaller child 4

• Now 8 is a leaf: stop
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HEAPS
-- TIME COMPLEXITY OF DELETE-MIN --
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function delete-min(H) 
begin

x= root of H;
r=key of x; 
remove r from node x;
take the last node (node n), remove its key (call it b), and store b in the root;
remove node n;
// now restore the heap
while (x has a key bigger than one of its children) do

swap x with the smaller child;
make x point to that child;

end while
// the while loop will stop when x becomes a leaf or  ≤ both its children
return r;

end delete-min 

Time complexity of delete-min():
• Before the while loop, there is constant-time work;
• The while loop iterates at most the height of the tree 

(recall h=O(log n))
• Each iteration takes constant time (swap)
• Therefore, delete-min takes O(h)=O(log n) time



IMPLEMENTATION OF HEAPS WITH ARRAYS
-- STRUCTURAL CORRESPONDENCE --

• Any almost-complete trees can be stored in an array A

• Node of canonical label i is placed in entry A[i]
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i: 1 2 3 4 5 6 7 8 9 10

A[i] a b c d e f g h i j

a

c

h

ed

b

gf

ji

1

2

4

3

5 6 7

8 9 10

An almost complete binary tree; 
the canonical labels are outside the nodes;
the data are inside the nodes;

The corresponding array; 
the data of node i is in A[i]



IMPLEMENTATION OF HEAPS WITH ARRAYS
-- NAVIGATION --

• Tree navigation (between parents and children, going to root, or going to 
last node) can be mirrored in the array

• The left and right children of node 𝑖𝑖 are 2𝑖𝑖 and 2𝑖𝑖 + 1, and the parent of 𝑖𝑖 is ⌊𝑖𝑖
2
⌋

• Going from node 𝑖𝑖 to its left/right child is like going from A[𝑖𝑖] to A[2𝑖𝑖] or A[2𝑖𝑖+ 1]

• Going from a node i to its parent is like going from A[𝑖𝑖] to A[⌊𝑖𝑖
2
⌋]

• The root is at A[1], and the last node  (say node n) is at A[n]
• Thus, for example, swapping nodes 𝑖𝑖 and 𝑗𝑗 is like swapping A[𝑖𝑖] and A[𝑗𝑗]

• Therefore, every step of the insert() and delete-min() can be expressed in 
terms of the array, and the time complexities stay the same, i.e., O(log n)

• So, the tree can be viewed as a conceptual implementation, while the 
array can be viewed as the physical implementation of the heap

CS 6212 Design and Analysis of Algorithms                                                                                    Data Structures

50



HEAPS AS ARRAYS
-- ILLUSTRATION: DELETE-MIN()--

Tree View Array View
Original Heap: Corresponding array:

Move last node 
to root:

Move last entry to A[1]:

Swap root with 
smaller child:

Swap root A[1]=8 with smaller child (A[2]=3):

Swap node 2 (key=8) 
with smaller child
(of node label 5):

Swap A[2]=8 with smaller child A[5]=4:
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CREATING A HEAP FROM SCRATCH

• How long does it take to build a heap of n values from scratch:

• One method is to call insert(…) n times on an initially empty heap

• Time:  𝑂𝑂(log 1 + log 2 + log 3 + ⋯+ log𝑛𝑛) = 𝑂𝑂(log𝑛𝑛!) = 𝑂𝑂(𝑛𝑛 log𝑛𝑛) ,where the last 
equality can be proved used Stirling’s approximation

• There is an alternative (recursive) method that takes O(n) time

• We won’t cover it in this course, and so you don’t need to know the algorithm for 
that

• But you need to know that heaps can be constructed in O(n) time
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USE OF HEAPS FOR SORTING

• You can use heaps for sorting, i.e., for re-ordering an arbitrary input 
array into increasing order (i.e., from the smallest to the largest)

• Method:

1. Build the input array into a heap  (in time O(n))

2. For i=1 to n do:  x=delete-min(); put x next in the output; endfor

• Time: 

• Step 2 takes 𝑂𝑂(log𝑛𝑛 + log 𝑛𝑛 − 1 + log 𝑛𝑛− 2 +⋯+ log 1) = 𝑂𝑂(log𝑛𝑛!) =
𝑂𝑂(𝑛𝑛 log𝑛𝑛)

• Therefore, total time is: 𝑂𝑂 𝑛𝑛 + 𝑂𝑂(𝑛𝑛 log𝑛𝑛) = 𝑂𝑂(𝑛𝑛 log𝑛𝑛)

CS 6212 Design and Analysis of Algorithms                                                                                    Data Structures

53



UNION-FIND DATA STRUCTURE
-- DEFINITION --

• Definition:
• Data: n disjoint sets {1}, {2}, … , {n}, where each set has initially a single 

element

• Operations:
• Union: U(A,B), which unions the two input sets A and B such that after the 

union, the two old sets A and B are removed from the collection of sets, and 
replaced by the new set 𝐶𝐶 = 𝐴𝐴 ∪ 𝐵𝐵.

• Find: F(x), where x is an integer between 1 and n, finds the set that 
contains x

• Notes:  
• The unions change the collection of sets, but the find(s) do not

• The sets in the collection are disjoint (non-overlapping) at all times
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UNION-FIND DATA STRUCTURE
-- GOAL AND STRATEGY --

• Goal: to design a data structure so that O(n) calls to U and F take as little 
time as possible

• We will carry out the design of the data structure by having two different 
representations of the sets: one conceptual and one physical.

• The conceptual representation: 

• Each set is a rooted tree (not necessarily binary) containing the elements 
of that set

• The nodes are labeled with the elements of the corresponding set

• As new sets are born (from Union), we need an automated naming system

• The physical representation will be derived a little later
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UNION-FIND DATA STRUCTURE
-- EXAMPLE OF TREE REPRESENTATION--

• Suppose we have 11 elements: 1, 2, 3, … , 11

• Suppose after a few unions, the collection of sets is:

{2,3,4,5,8},   {6,7},   {1,9,10}, and {11}

• The tree representation of the data structure can be:
• One tree per set: the tree contains the elements of its set

• We don’t care about the structure of each tree

• But we care what elements are in each tree

• We need a set-naming mechanism that gives a unique name to each set, 
including to new sets that emerge out of Union

• Naming scheme: Let the root label double as the label for that set
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UNION-FIND DATA STRUCTURE
-- FIRST IMPLEMENTATION (UNION) --

• U(A,B) can be done by “a single stroke”

• Make the root of A to be the parent of the root of B

• Note that the trees of A and B stop existing separately, and are replaced by the 
new tree, which is what we want

• Example:  

• Do U(2,9) when the collection is: 

• This unions the tree rooted at 2 with the tree rooted at 9,  which is like, 
U({2,3,4,5,8}, {1,9,10})

• The result, derived by making 2 the parent of 9: 
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UNION-FIND DATA STRUCTURE
-- FIRST IMPLEMENTATION (FIND) --

• F(x) needs to return the name of the set containing element (int) x

• The name of that set is the label of the root of the corresponding tree

• We can find that root by:
• Moving up from x to its parent, and from that to its parent, and so on until we 

get to the root, which has no parent

• Return that root.

• Example: F(10)
• Parent of 10 is 9

• Parent of 9 is 2

• Parent of 2 doesn’t exit => 2 is the root => return 2 (which means that the set 
that contains 10 is set 2)
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UNION-FIND DATA STRUCTURE
-- FIRST PHYSICAL IMPLEMENTATION --

• We can implement the collections of trees (we call it forest) by using 
general tree representations (using node records and pointers)

• But there is a better, cheaper representation, which we’ll derive next

• Note that in both the Union and Find that we just did, we only needed to 
refer to parents of nodes (never to children), and to know which is root

• So, if we use a physical representation that stores the parent of each node 
and that signals which nodes are root, that representation is adequate for 
implementing U and F

• Answer: a single array PARENT[1:n] where
• PARENT[i] stores the parent of node i

• If i is a root,  set PARENT[i]=0 (or any number other than 1,2, …, n)
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UNION-FIND DATA STRUCTURE
-- FIRST PHYSICAL IMPLEMENTATION: PARENT ARRAY --

• PARENT array of this collection:

• Note: at the beginning, PARENT[i]=0 for all i, because each set is a single node, 
and so, that node is root.

• Implementation of U and F 

using PARENT:
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𝑖𝑖 1 2 3 4 5 6 7 8 9 10 11

PARENT 9 0 2 2 2 0 6 4 0 9 0

Procedure U(i,j)
Begin

PARENT[j]=i;
End U

Function F(x)
begin

int r=x;
while PARENT[r] > 0) do

r = PARENT[r];
endwhile // now r is a root

return (r);
end

• Time: O(h)
• h= height of tree

• Time: O(1)



UNION-FIND DATA STRUCTURE
-- FIRST PHYSICAL IMPLEMENTATION: U(2,9) AND F(10) --

• PARENT array of this collection before U(2,9):

• U(2,9): PARENT[9]=2, which results in this array:

• F(10):
• PARENT[10] == 9 → PARENT[9] == 2 → PARENT[2]==0 → 2 is the root 
• Therefore, the set returned by F(10) is set 2, which is correct
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𝑖𝑖 1 2 3 4 5 6 7 8 9 10 11

PARENT 9 0 2 2 2 0 6 4 2 9 0

𝑖𝑖 1 2 3 4 5 6 7 8 9 10 11

PARENT 9 0 2 2 2 0 6 4 0 9 0



UNION-FIND DATA STRUCTURE
-- 1ST IMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--

• Each Union takes O(1) time, so O(n) U’s take O(n) time

• Each Find takes O(h), but how bad can h be?

• Answer: it can be as bad as O(n), which makes O(n) calls to F take O(n2)  time

• Proof: 

• Take this sequence of calls: U(2,1), U(3,2), U(4,3), … , U(n, n-1), F(1), F(2), … , F(n)

• The calls to U create a single-path tree: n, n-1, n-2, … , 2,  1  (prove that to yourself)

• The depth of node (i) is n-i, for all i

• Thus, each F(i) takes O(n-i) time 

• Therefore, the n calls to F take: O(1+2+…+(n-1))=O(n(n-1)/2)=O(n2)

• O(n2) can be quite costly: check if n = 1 Mil, on a computer that executes 
1MFLOP (1 million operations/second), what is O(n2) be in real time?
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UNION-FIND DATA STRUCTURE
-- SECOND IMPLEMENTATION --

• Issue: the reason we could get such long thin trees is

• U(i,j) makes i the parent of j regardless of how small tree i is

• Remedy: Make the root of the bigger tree the parent of the other root

• Issue: This requires that we compute (or keep track of) the size of each tree

• Remedy: If i is a root, let PARENT[i] store the number of nodes in tree rooted at i

• Issue: If PARENT[i]==3, Is 3 the parent of i or # nodes in tree rooted at i?

• Remedy: For root 𝑖𝑖, make 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 𝒊𝒊 = −(number of nodes in tree of 𝒊𝒊)

• Issue: How to efficiently update tree size while doing unions?

• Remedy:  When making i parent of j, the new tree of i has the sum of nodes of the 
two old trees: PARENT[i]:=PARENT[i]+PARENT[j], which takes O(1) time!!
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UNION-FIND DATA STRUCTURE
-- 2ND IMPLEMENTATION (UNION) --

• PARENT array of this collection:

• At the start, PARENT[𝑖𝑖]= −1 ∀𝑖𝑖, why? 

• Implementation of U:

• How about Find F: same as before

• Time of U: O(1)
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𝑖𝑖 1 2 3 4 5 6 7 8 9 10 11

PARENT 9 -5 2 2 2 -2 6 4 -3 9 -1
Procedure U(i,j)
Begin

if |PARENT[i]| >= |PARENT[j]| then
PARENT[i]=PARENT[i]+PARENT[j];
PARENT[j]=i;

else
PARENT[j]=PARENT[i]+PARENT[j];
PARENT[i]=j;

endif
End U



UNION-FIND DATA STRUCTURE
-- 2ND IMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--

• Each Union takes O(1) time, so O(n) U’s take O(n) time

• Each Find  F(x) takes O(h), but how bad can h be?

• Theorem: hx ≤ log Nx where hx and  Nx are the height and # nodes in the tree 
containing x

• Proof: next slide
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UNION-FIND DATA STRUCTURE
-- 2ND IMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--

• Theorem: hx ≤ log Nx for all x.

• Proof: By induction on the number of U’s that created the tree of x (call it Tx)

• Call m that number of calls to U

• Basis: m=0. Then Tx is a 1-node tree, i.e., Nx=1 and hx=0. Since log Nx=log 1=0, 
it follows that hx=log Nx and thus hx ≤ log Nx in the basis case.

• Induction: Assume that hy ≤ log Ny for all trees created after m-1 calls to U, and 
let Tx be in a tree created from m calls to U. Prove that hx ≤ log Nx .

• Suppose the mth call to U is U(i,j), and let Ti and Tj be 

the trees rooted at i and j before that call to U. 

• Those two trees were created by at most m-1 calls to U, so 

by the induction hypothesis, hi ≤ log Ni and hj ≤ log Nj
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CONTINUATION OF THEOREM PROOF
-- 2ND IMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--

• Proof continuation:

• Recall that Tx is the whole tree shown to the right

• 𝑁𝑁𝑥𝑥 = 𝑁𝑁𝑖𝑖 +𝑁𝑁𝑗𝑗
• We’re assuming without loss of generality that 𝑁𝑁𝑖𝑖 ≥ 𝑁𝑁𝑗𝑗
• ℎ𝑥𝑥 = max ℎ𝑖𝑖 , 1 + ℎ𝑗𝑗 ≤ max log𝑁𝑁𝑖𝑖 , 1 + log𝑁𝑁𝑗𝑗 = max(log𝑁𝑁𝑖𝑖 , log 2 + log𝑁𝑁𝑗𝑗)

• ℎ𝑥𝑥 ≤ max log𝑁𝑁𝑖𝑖 , log 2 + log𝑁𝑁𝑗𝑗 = max(log𝑁𝑁𝑖𝑖 , log(2𝑁𝑁𝑗𝑗))

• Now, 2𝑁𝑁𝑗𝑗 = 𝑁𝑁𝑗𝑗 +𝑁𝑁𝑗𝑗 ≤ 𝑁𝑁𝑖𝑖 +𝑁𝑁𝑗𝑗 = 𝑁𝑁𝑥𝑥 ⇒ log(2𝑁𝑁𝑗𝑗) ≤ log 𝑁𝑁𝑥𝑥
• Also, 𝑁𝑁𝑖𝑖 ≤ 𝑁𝑁𝑖𝑖 +𝑁𝑁𝑗𝑗 = 𝑁𝑁𝑥𝑥 ⇒ log𝑁𝑁𝑖𝑖 ≤ log 𝑁𝑁𝑥𝑥
• From the previous 3 bullets, we get: ℎ𝑥𝑥 ≤ max(log𝑁𝑁𝑖𝑖 , log(2𝑁𝑁𝑗𝑗)) ≤ log 𝑁𝑁𝑥𝑥
• Therefore, ℎ𝑥𝑥 ≤ log 𝑁𝑁𝑥𝑥, which is what we needed to prove.    Q.E.D.
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UNION-FIND DATA STRUCTURE
-- 2ND IMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--

• Each Union takes O(1) time, so O(n) U’s take O(n) time

• Each Find  F(x) takes 𝑂𝑂 ℎ𝑥𝑥 = 𝑂𝑂 log𝑁𝑁𝑥𝑥 = 𝑂𝑂(log 𝑛𝑛)

• Therefore, O(n) F’s take 𝑂𝑂 𝑛𝑛 log 𝑛𝑛 time

• Conclusion: O(n) calls to U and F take O(n + n log n)=O(n log n) time

• That is much better than O(n2) time
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• Can we do better?

• Yes: Keep U as in the 2nd implementation, but speed up F

• How? Path Compression

• Call F(x) tracing the path from x to the root (call it r)

• Trace that path again, making each node along the way an immediate child 
of r

UNION-FIND DATA STRUCTURE
-- THIRD IMPLEMENTATION: PATH COMPRESSION --
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UNION-FIND DATA STRUCTURE
-- 3RD IMPLEMENTATION: PSEUDOCODE OF FIND --
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FunctionF(x)
begin

int r,s,t;
r=x;
while PARENT[r] > 0 do r = PARENT[r]; endwhile 
//now r is a root
s=x;  // s will trace the path from x to the root r
while s != r do

t := s; // t records the current value of s before s steps to its parent
s := PARENT[s];
PARENT[t] := r; // make t an immediate child of root r

endwhile
return (r);

End F



UNION-FIND DATA STRUCTURE
-- 3RD IMPLEMENTATION TIME COMPLEXITY OF O(N) CALLS TO U AND F--

• Theorem: Every O(n) sequence of calls to U’s and F’s take O(n G(n)) time 
where G(n) ≤ 5 ∀ n ≤ 265000. 

• We won’t give a proof for that.

• So, for all practical values of n, G(n) ≤ 5, and so practically the sequence of 
calls takes O(n) time.
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